

232 North Plaza Drive Nicholasville, KY 40356 +1-833-KCA-LABS https://kcalabs.com KDA Lic.# P_0058

Certificate of Analysis

1 of 8

banana macaroon

Sample ID: SA-220207-7071

Batch: 210050

Type: Finished Products Matrix: Concentrate - Distillate Received: 02/09/2022 Completed: 02/25/2022 **Client** KaliBloom Miami, FL USA

Summary

Test **Date Tested** Status 02/24/2022 Cannabinoids Tested Cannabinoids (Additional) 02/24/2022 Tested 02/14/2022 Tested Heavy Metals Microbials 02/16/2022 Tested Mycotoxins 02/25/2022 Tested Pesticides 02/25/2022 Tested Residual Solvents 02/17/2022 Tested Terpenes 02/22/2022 Tested

Cannabinoids by HPLC-PDA, LC-MS/MS, and/or GC-MS/MS

ND	0.116 %	0.116 %	Not Tested	Not Tested	Yes
Total Δ9-THC	CBN	Total Cannabinoids	Moisture Content	Foreign Matter	Internal Standard Normalization

								Normalization
Analyte	LOD (%)	LOQ (%)	Result (%)	Result (mg/g)				
CBC	0.0095	0.0284	ND	ND	uAU		SA-220207-7071	
CBCA	0.0181	0.0543	ND	ND	u. 10			
CBCV	0.006	0.018	ND	ND	-			1
CBD	0.0081	0.0242	ND	ND	-			
CBDA	0.0043	0.013	ND	ND	400000-			
CBDV	0.0061	0.0182	ND	ND				
CBDVA	0.0021	0.0063	ND	ND	-			
CBG	0.0057	0.0172	ND	ND	300000			
CBGA	0.0049	0.0147	ND	ND				
CBL	0.0112	0.0335	ND	ND	-			
CBLA	0.0124	0.0371 <	ND	ND	200000			
CBN <	0.0056	0.0169	0.116	1.16				ard
CBNA	0.006	0.0181	ND	ND				Standard
∆8-THC	0.0104	0.0312	ND	ND	100000			ternal
∆9-THC	0.0076	0.0227	ND	ND	-			
∆9-THCA	0.0084	0.0251 <	ND	ND				11 1
Δ9-THCV	0.0069	0.0206	ND	ND	0-	N N N N N N N N N N N N N N N N N N N	JV	
∆9-THCVA	0.0062	0.0186	ND	ND				
Total Δ9-THC			ND	ND		2.5 5.0	7.5	10.0
Total CBD			ND	ND				Γ
Total			0.116	1.16				

ND = Not Detected; NT = Not Tested; LOD = Limit of Detection; LOQ = Limit of Quantitation; RL = Reporting Limit; Δ = Delta; Total Δ9-THC = Δ9-THCA * 0.877 + Δ9-THC; Total CBD = CBDA * 0.877 + CBD;

Generated By: Alex Morris
Quality Assurance Manager

Date: 02/25/2022

Tested By: Jasper van Heemst Principal Scientist Date: 02/24/2022

KCA Laboratories 232 North Plaza Drive Nicholasville, KY 40356

+1-833-KCA-LABS https://kcalabs.com KDA Lic.# P_0058

Certificate of Analysis

2 of 8

banana macaroon

Sample ID: SA-220207-7071

Batch: 210050

Type: Finished Products Matrix: Concentrate - Distillate Received: 02/09/2022 Completed: 02/25/2022 Client KaliBloom Miami, FL USA

Cannabinoids by HPLC-PDA, LC-MS/MS, and/or GC-MS/MS

ND = Not Detected; NT = Not Tested; LOD = Limit of Detection; LOQ = Limit of Quantitation; RL = Reporting Limit; Δ = Delta; Total Δ 9-THC = Δ 9-THC + Δ 9-THC; Total CBD = CBDA * 0.877 + CBD;

Tested By: Jasper van Heemst Principal Scientist Date: 02/24/2022

Generated By: Alex Morris Quality Assurance Manager Date: 02/25/2022

This product or substance has been tested by KCA Laboratories using validated testing methodologies and an ISO/IEC 170252017 accredited quality system. Values reported relate only to the product or substance tested. The reported result is based on a sample weight. Unless otherwise stated, results of tests performed on all quality control samples met criteria for acceptance established by KCA Laboratories. KCA Laboratories makes no claims as to the efficacy, safety or other risks associated with any detected or non-detected amounts of any substances reported herein. This Certificate of Analysis shall not be reproduced except in full, without the written approval of KCA Laboratories can provide measurement uncertainty upon request.

232 North Plaza Drive Nicholasville, KY 40356 +1-833-KCA-LABS https://kcalabs.com KDA Lic.# P_0058

Certificate of Analysis

3 of 8

banana macaroon

Sample ID: SA-220207-7071 Batch: 210050

Type: Finished Products Matrix: Concentrate - Distillate Received: 02/09/2022 Completed: 02/25/2022 **Client** KaliBloom Miami, FL USA

Terpenes by HS-GC-MS/MS

Analyte	LOD (%)	LOQ (%)	Result (%)	Analyte	LOD (%)	LOQ (%)	Result (%)
α -Bisabolol	0.00001	0.00005	0.150809	Limonene	0.00001	0.00005	0.075932
(+)-Borneol	0.00001	0.00005	ND	Linalool	0.00001	0.00005	0.058361
Camphene	0.00001	0.00005	0.027343	β-myrcene	0.00001	0.00005	0.520865
Camphor	0.00001	0.00005	0.007143	Nerol	0.00001	0.00005	ND
3-Carene	0.00001	0.00005	0.070363	cis-Nerolidol	0.00001	0.00005	ND
β-Caryophyllene	0.00001	0.00005	0.484721	trans-Nerolidol	0.00001	0.00005	ND
Caryophyllene Oxide	0.00001	0.00005	ND	Ocimene	0.00001	0.00005	ND
α -Cedrene	0.00001	0.00005	0.016215	α-Phellandrene	0.00001	0.00005	ND
Cedrol	0.00001	0.00005	ND	α-Pinene	0.00001	0.00005	0.31332
Eucalyptol	0.00001	0.00005	ND	β-Pinene	0.00001	0.00005	0.258918
Fenchone	0.00001	0.00005	ND	Pulegone	0.00001	0.00005	ND
Fenchyl Alcohol	0.00001	0.00005	0.072154	Sabinene	0.00001	0.00005	ND
Geraniol	0.00001	0.00005	ND	Sabinene Hydrate	0.00001	0.00005	ND
Geranyl Acetate	0.00001	0.00005	ND	α -Terpinene	0.00001	0.00005	0.016779
Guaiol	0.00001	0.00005	ND	γ-Terpinene	0.00001	0.00005	0.009027
Hexadhydrothymol	0.00001	0.00005	0.011684	α-Terpineol	0.00001	0.00005	0.018078
lpha-Humulene	0.00001	0.00005	0.491806	γ-Terpineol	0.00001	0.00005	ND
Isoborneol	0.00001	0.00005	0.008726	Terpinolene	0.00001	0.00005	0.982015
Isopulegol	0.00001	0.00005	ND	Total Terpenes (%)			3.64

ND = Not Detected; NT = Not Tested; LOD = Limit of Detection; LOQ = Limit of Quantitation; P = Pass; F = Fail; RL = Reporting Limit

Heavy Metals by ICP-MS

Analyte	LOD (ppb)	LOQ (ppb)	Result (ppb)
Arsenic	2	20	ND
Cadmium	1	20	ND
Lead	2	20	ND
Mercury	12	50	ND

 $ND = Not\ Detected;\ NT = Not\ Tested;\ LOD = Limit\ of\ Detection;\ LOQ = Limit\ of\ Quantitation;\ P = Pass;\ F = Fail;\ RL = Reporting\ Limit\ Detection;\ P = Pass;\ P = Fail;\ P = Pass;\ P =$

Tested By Nicholas Howillrd Sensorientishtist Date: 02/22/2022

+1-833-KCA-LABS 232 North Plaza Drive https://kcalabs.com Nicholasville, KY 40356 KDA Lic.# P_0058

Certificate of Analysis

4 of 8

banana macaroon

Sample ID: SA-220207-7071

Batch: 210050

Type: Finished Products Matrix: Concentrate - Distillate Received: 02/09/2022 Completed: 02/25/2022 Client KaliBloom Miami, FL USA

Pesticides by LC-MS/MS and GC-MS/MS

Analyte	LOD (ppb)	LOQ (ppb)	Result (ppb)	Analyte	LOD (ppb)	LOQ (ppb)	Result (ppb)
Abamectin	30	100	ND	Hexythiazox	30	100	ND
Acephate	30	100	ND	Imazalil	30	100	ND
Acetamiprid	30	100	ND	Imidacloprid	30	100	ND
Aldicarb	30	100	ND	Kresoxim methyl	30	100	ND
Azoxystrobin	30	100	ND	Malathion	30	100	ND
Bifenazate	30	100	ND	Metalaxyl	30	100	ND
Boscalid	30	100	ND	Methiocarb	30	100	ND
Carbaryl	30	100	ND	Methomyl	30	100	ND
Carbofuran	30	100	ND	Mevinphos	30	100	ND
Chloranthraniliprole	30	100	ND	Myclobutanil	30	100	ND
Chlorpyrifos	30	100	ND	Oxamyl	30	100	ND
Coumaphos	30	100	ND	Paclobutrazol	30	100	ND
Diazinon	30	100	ND	Piperonyl Butoxide	30	100	ND
Dichlorvos	30	100	ND	Propoxur	30	100	ND
Dimethoate	30	100	ND	Pyridaben	30	100	ND
Dimethomorph	30	100	ND	Spinetoram	30	100	ND
Ethoprophos	30	100	ND	Spinosad	30	100	ND
Etoxazole	30	100	ND	Spiromesifen	30	100	ND
Fenhexamid	30	100	ND	Spirotetramat	30	100	ND
Fenoxycarb	30	100	ND	Spiroxamine	30	100	ND
Fenpyroximate	30	100	ND	Tebuconazole	30	100	ND
Fipronil	30	100	ND	Thiacloprid	30	100	ND
Flonicamid	30	100	ND	Thiamethoxam	30	100	ND
				Trifloxystrobin	30	100	ND

ND = Not Detected; NT = Not Tested; LOD = Limit of Detection; LOQ = Limit of Quantitation; P = Pass; F = Fail; RL = Reporting Limit

Generated By: Alex Morris Quality Assurance Manager Date: 02/25/2022

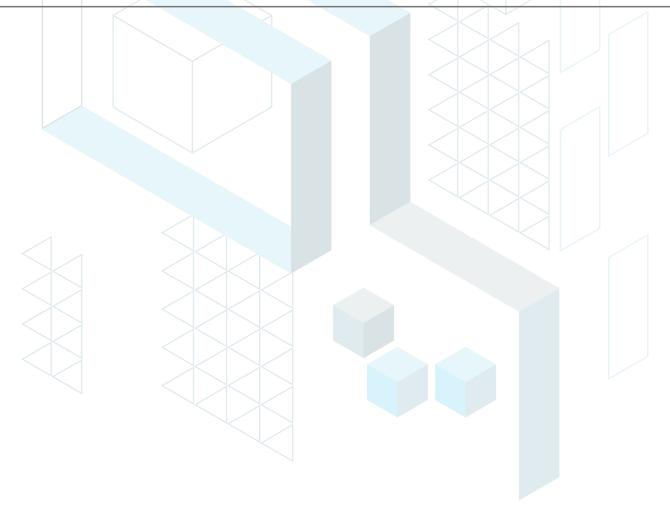
Tested By: Scott Caudill Senior Scientist Date: 02/25/2022

+1-833-KCA-LABS 232 North Plaza Drive https://kcalabs.com Nicholasville, KY 40356 KDA Lic.# P_0058

Certificate of Analysis

5 of 8

banana macaroon


Sample ID: SA-220207-7071 Batch: 210050 Type: Finished Products Matrix: Concentrate - Distillate

Received: 02/09/2022 Completed: 02/25/2022 Client KaliBloom Miami, FL USA

Mycotoxins by LC-MS/MS

Analyte	LOD (ppb)	LOQ (ppb)	Result (ppb)
B1	1	5	ND
B2	1	5	ND
G1	1	5	ND
G2	1	5	ND
Ochratoxin A	1	5	ND

ND = Not Detected; NT = Not Tested; LOD = Limit of Detection; LOQ = Limit of Quantitation; P = Pass; F = Fail; RL = Reporting Limit

Generated By: Alex Morris Quality Assurance Manager

Date: 02/25/2022

Tested By: Scott Caudill Senior Scientist Date: 02/25/2022

KCA Laboratories 232 North Plaza Drive Nicholasville, KY 40356

+1-833-KCA-LABS https://kcalabs.com KDA Lic.# P_0058

Certificate of Analysis

6 of 8

banana macaroon

Sample ID: SA-220207-7071

Batch: 210050

Type: Finished Products Matrix: Concentrate - Distillate Received: 02/09/2022 Completed: 02/25/2022 **Client** KaliBloom Miami, FL USA

Microbials by PCR and Plating

Analyte	LOD (CFU/g)	Result (CFU/g)	Result (Qualitative)
Coliforms	1	ND	
Aerobic Bacteria	1	ND	
Salmonella			Not Detected per 1 gram
Total Enterphacteriaceae			Not Detected per Laram

ND = Not Detected; NT = Not Tested; LOD = Limit of Detection; LOQ = Limit of Quantitation; CFU = Colony Forming Units; P = Pass; F = Fail; RL = Reporting Limit

Generated By: Alex Morris Quality Assurance Manager Date: 02/25/2022 Tested By: Alex Morris Quality Assurance Manager Date: 02/16/2022

232 North Plaza Drive Nicholasville, KY 40356 +1-833-KCA-LABS https://kcalabs.com KDA Lic.# P_0058

Certificate of Analysis

7 of 8

banana macaroon

Sample ID: SA-220207-7071

Batch: 210050

Type: Finished Products Matrix: Concentrate - Distillate Received: 02/09/2022 Completed: 02/25/2022 **Client** KaliBloom Miami, FL USA

Residual Solvents by HS-GC-MS/MS

Analyte	LOD (ppm)	LOQ (ppm)	Result (ppm)	Analyte	LOD (ppm)	LOQ (ppm)	Result (ppm)
Acetone	167	500	ND	Ethylene Glycol	21	62	ND
Acetonitrile	14	41	ND	Ethylene Oxide	0.5	1/1	ND
Benzene	0.5	1	ND	Heptane	167	500	ND
Butane	167	500	ND	n-Hexane	10	29	ND
1-Butanol	167	500	ND	Isobutane	167	500	ND
2-Butanol	167	500	ND	Isopropyl Acetate	167	500	ND
2-Butanone	167	500	ND	Isopropyl Alcohol	167	500	ND
Chloroform	2	6	ND	Isopropylbenzene	167	500	ND
Cyclohexane	129	388	ND	Methanol	100	300	ND
1,2-Dichloroethane	0.5	1	ND	2-Methylbutane	10	29	ND
1,2-Dimethoxyethane	4	10	ND	Methylene Chloride	20	60	ND
Dimethyl Sulfoxide	167	500	ND	2-Methylpentane	10	29	ND
N,N-Dimethylacetamide	37	109	ND	3-Methylpentane	10	29	ND
2,2-Dimethylbutane	10	29	ND	n-Pentane	167	500	ND
2,3-Dimethylbutane	10	29	ND	1-Pentanol	167	500	ND
N,N-Dimethylformamide	30	88	ND	n-Propane	167	500	ND
2,2-Dimethylpropane	167	500	ND	1-Propanol	167	500	ND
1,4-Dioxane	13	38	ND	Pyridine	7	20	ND
Ethanol	167	500	ND	Tetrahydrofuran	24	72	ND
2-Ethoxyethanol	6	16	ND	Toluene	30	89	ND
Ethyl Acetate	167	500	ND	Trichloroethylene	3	8	ND
Ethyl Ether	167	500	ND	Tetramethylene Sulfone	6	16	ND
Ethylbenzene	3	7	ND	Xylenes (o-, m-, and p-)	73	217	ND

ND = Not Detected; NT = Not Tested; LOD = Limit of Detection; LOQ = Limit of Quantitation; P = Pass; F = Fail; RL = Reporting Limit

amorrie

Generated By: Alex Morris Quality Assurance Manager Date: 02/25/2022 Tested By: Scott Caudill Senior Scientist Date: 02/17/2022

232 North Plaza Drive Nicholasville, KY 40356 +1-833-KCA-LABS https://kcalabs.com KDA Lic.# P_0058

Certificate of Analysis

8 of 8

banana macaroon

Sample ID: SA-220207-7071

Batch: 210050

Type: Finished Products Matrix: Concentrate - Distillate Received: 02/09/2022 Completed: 02/25/2022 **Client** KaliBloom Miami, FL USA

Reporting Limit Appendix

Heavy Metals - Colorado CDPHE

Analyte	Limit (ppb) Analyte	Limit (ppb)
Arsenic	1500 Lead	500
Cadmium	500 Mercury	1500

Microbials - Colorado CDPHE

Analyte	Limit (CFU/ g) Analyte	Limit (CFU/ g)
Coliforms	100 Aerobic Bacteria	10000

Residual Solvents - USP 467

Analyte	Limit (ppm)	Analyte	Limit (ppm
Acetone	5000	Ethylene Glycol	620
Acetonitrile	410	Ethylene Oxide	1
Benzene	2	Heptane	5000
Butane	5000	n-Hexane	290
1-Butanol	5000	Isobutane	5000
2-Butanol	5000	Isopropyl Acetate	5000
2-Butanone	5000	Isopropyl Alcohol	5000
Chloroform	60	Isopropylbenzene	5000
Cyclohexane	3880	Methanol	3000
1,2-Dichloroethane	5	2-Methylbutane	290
1,2-Dimethoxyethane	100	Methylene Chloride	600
Dimethyl Sulfoxide	5000	2-Methylpentane	290
N,N-Dimethylacetamide	1090	3-Methylpentane	290
2,2-Dimethylbutane	290	n-Pentane	5000
	290	1-Pentanol	5000
N,N-Dimethylformamide	880	n-Propane	5000
2,2-Dimethylpropane	5000	1-Propanol	5000
1,4-Dioxane	380	Pyridine	200
Ethanol	5000	Tetrahydrofuran	720
2-Ethoxyethanol	160	Toluene	890
Ethyl Acetate	5000	Trichloroethylene	80
Ethyl Ether	5000	Tetramethylene Sulfone	160
Ethylbenzene	70	Xylenes (o-, m-, and p-)	2170

Pesticides - CA DCC

Analyte	Limit (ppb)	Analyte	Limit (ppb)
Acetamiprid	5000	Imidacloprid	3000
Aldicarb	30	Kresoxim methyl	1000
Azoxystrobin	40000	Malathion	5000
Bifenazate	5000	Metalaxyl	15000
Boscalid	10000	Methiocarb	30
Carbaryl	500	Methomyl	100
Carbofuran	30	Mevinphos	30
Chloranthraniliprole	40000	Myclobutanil	9000
Chlorpyrifos	30	Oxamyl	200
Coumaphos	30	Paclobutrazol	30
Diazinon	200	Piperonyl Butoxide	8000
Dichlorvos	30	Propoxur	30
Dimethoate	30	Pyridaben	3000
Dimethomorph	20000	Spinetoram	3000
Ethoprophos	30	Spinosad	3000
Etoxazole	1500	Spiromesifen	12000
Fenhexamid	10000	Spirotetramat	13000
Fenoxycarb	30	Spiroxamine	30
Fenpyroximate	2000	Tebuconazole	2000
Fipronil	30	Thiacloprid	30
Flonicamid	2000	Thiamethoxam	4500

Mycotoxins - Colorado CDPHE

Analyte	Limit (ppm) Ana	lyte	Limit (ppm)
B1	5 B2		5
G1	5 G2		5
Ochratoxin A	5		

Pesticides - CA DCC

Analyte	Limit (ppb) Analyte	Limit (ppb)
Abamectin	300 Hexythiazox	2000
Acephate	5000 Imazalil	30

232 North Plaza Drive Nicholasville, KY 40356 +1-833-KCA-LABS https://kcalabs.com KDA Lic.# P_0058

Certificate of Analysis

1 of 8

cherry souffle

Sample ID: SA-220207-7072

Batch: 210050

Type: Finished Products Matrix: Concentrate - Distillate Received: 02/09/2022 Completed: 03/02/2022 Client KaliBloom Miami, FL USA

Summary

Test	Date Tested	Status
Cannabinoids	03/02/2022	Tested
Cannabinoids (Additional)	03/02/2022	Tested
Foreign Matter	02/09/2022	Tested
Heavy Metals	02/14/2022	Tested
Microbials	02/16/2022	Tested
Mycotoxins	02/25/2022	Tested
Pesticides	02/25/2022	Tested
Residual Solvents	02/17/2022	Tested
Terpenes	02/22/2022	Tested

ND

ND

ND

ND

0.151

0.0206

0.0186

	ND	0.151 %	JA, L	0.151 %		Or GC-MS/MS Not Tested	Not Detected	Yes
	I Д9-ТНС	CBN		Total Canna		Moisture Content	Foreign Matter	Internal Standard Normalization
Analyte	LOD (%)	LOQ (%)	Result (%)	Result (mg/g)			SA-220207-7072	
CBC	0.0095	0.0284	ND	ND	mAU			
CBCA	0.0181	0.0543	ND	ND	500		克 克	
CBCV	0.006	0.018	ND	ND	_		(6aR,9K,10aR)-HHC	
CBD	0.0081	0.0242	ND	ND	_		\$38,1 \$35,1	
CBDA	0.0043	0.013	ND	ND	400-		(6af	
CBDV	0.0061	0.0182	ND	ND	-			
CBDVA	0.0021	0.0063	ND	ND	-			
CBG	0.0057	0.0172	ND	ND	300			
CBGA	0.0049	0.0147	ND	ND				
CBL	0.0112	0.0335	ND	ND	-			
CBLA	0.0124	0.0371	ND	ND	200			
CBN	0.0056	0.0169	0.151	1.51				ndard
CBNA	0.006	0.0181	ND	ND	-			al Sta
2HT-8	0.0104	0.0312	ND	ND	100-			Intern
∆9-THC	0.0076	0.0227	ND	ND	-			A
Δ9-THCA	0.0084	0.0251 <	ND	ND				Λ 1

ND = Not Detected; NT = Not Tested; LOD = Limit of Detection; LOQ = Limit of Quantitation; RL = Reporting Limit; Δ = Delta; Total Δ9-THC = Δ9-THCA * 0.877 + Δ9-THC; Total CBD = CBDA * 0.877 + CBD;

2.5

5.0

Generated By: Ryan Bellone Commercial Director Date: 03/02/2022

0.0069

0.0062

Δ9-ΤΗCV

Δ9-ΤΗCVA

Total CBD

Total

Total Δ9-THC

Tested By: Scott Caudill Senior Scientist Date: 03/02/2022

ND

ND

ND

ND

1.51

7.5

10.0

ISO/IEC 17025:2017 Accredited Accreditation #108651

min

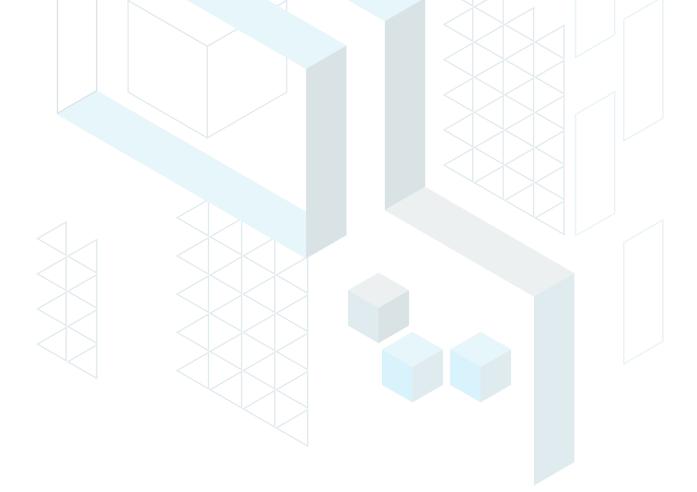
KCA Laboratories 232 North Plaza Drive

+1-833-KCA-LABS https://kcalabs.com Nicholasville, KY 40356 KDA Lic.# P_0058

Certificate of Analysis

2 of 8

cherry souffle


Sample ID: SA-220207-7072 Batch: 210050 Type: Finished Products Matrix: Concentrate - Distillate

Received: 02/09/2022 Completed: 03/02/2022 Client KaliBloom Miami, FL USA

Cannabinoids by HPLC-PDA, LC-MS/MS, and/or GC-MS/MS

Analyte	LOD (%)	LOQ (%)	Result (%)	Result (mg/g)
(6aR,9R,10aR)-HHC			41.2	412
(6aR,9S,10aR)-HHC			52.8	528
Total Additional Cannabinoids			94.0	940
Total			94.2	942

ND = Not Detected; NT = Not Tested; LOD = Limit of Detection; LOQ = Limit of Quantitation; RL = Reporting Limit; Δ = Delta; Total Δ9-THC = Δ9-THCA * 0.877 + Δ9-THC; Total CBD = CBDA * 0.877 + CBD;

Generated By: Ryan Bellone Commercial Director Date: 03/02/2022

Tested By: Scott Caudill Senior Scientist Date: 03/02/2022

ISO/IEC 17025:2017 Accredited Accreditation #108651

232 North Plaza Drive Nicholasville, KY 40356 +1-833-KCA-LABS https://kcalabs.com KDA Lic.# P_0058

Certificate of Analysis

3 of 8

cherry souffle

Sample ID: SA-220207-7072 Batch: 210050

Type: Finished Products Matrix: Concentrate - Distillate Received: 02/09/2022 Completed: 03/02/2022 **Client** KaliBloom Miami, FL USA

Terpenes by HS-GC-MS/MS

					< .L_ /		
Analyte	LOD (%)	LOQ (%)	Result (%)	Analyte	LOD (%)	LOQ (%)	Result (%)
α-Bisabolol	0.00001	0.00005	0.200756	Limonene	0.00001	0.00005	1.19959
(+)-Borneol	0.00001	0.00005	ND	Linalool	0.00001	0.00005	0.344896
Camphene	0.00001	0.00005	0.036596	β-myrcene	0.00001	0.00005	0.898928
Camphor	0.00001	0.00005	0.008654	Nerol	0.00001	0.00005	ND
3-Carene	0.00001	0.00005	0.015055	cis-Nerolidol	0.00001	0.00005	ND
β-Caryophyllene	0.00001	0.00005	0.119892	trans-Nerolidol	0.00001	0.00005	ND
Caryophyllene Oxide	0.00001	0.00005	ND	Ocimene	0.00001	0.00005	ND
α -Cedrene	0.00001	0.00005	0.008726	α -Phellandrene	0.00001	0.00005	0.038133
Cedrol	0.00001	0.00005	ND	α -Pinene	0.00001	0.00005	0.161899
Eucalyptol	0.00001	0.00005	ND	β-Pinene	0.00001	0.00005	0.209981
Fenchone	0.00001	0.00005	ND	Pulegone	0.00001	0.00005	ND
Fenchyl Alcohol	0.00001	0.00005	0.21701	Sabinene	0.00001	0.00005	ND
Geraniol	0.00001	0.00005	ND	Sabinene Hydrate	0.00001	0.00005	ND
Geranyl Acetate	0.00001	0.00005	ND	α -Terpinene	0.00001	0.00005	0.00619
Guaiol	0.00001	0.00005	ND	γ-Terpinene	0.00001	0.00005	0.004408
Hexadhydrothymol	0.00001	0.00005	ND	α-Terpineol	0.00001	0.00005	0.092554
lpha-Humulene	0.00001	0.00005	0.12329	γ-Terpineol	0.00001	0.00005	ND
Isoborneol	0.00001	0.00005	ND	Terpinolene	0.00001	0.00005	0.131995
Isopulegol	0.00001	0.00005	ND	Total Terpenes (%)			3.82

ND = Not Detected; NT = Not Tested; LOD = Limit of Detection; LOQ = Limit of Quantitation; P = Pass; F = Fail; RL = Reporting Limit

Heavy Metals by ICP-MS

Analyte	LOD (ppb)	LOQ (ppb)	Result (ppb)	
Arsenic	2	20	ND	
Cadmium	1	20	ND	
Lead	2	20	ND	
Mercury	12	50	ND	

 $ND = Not \ Detected; \ NT = Not \ Tested; \ LOD = Limit \ of \ Detection; \ LOQ = Limit \ of \ Quantitation; \ P = Pass; \ F = Fail; \ RL = Reporting \ Limit \ of \ Pass \ Pas$

Generated By: Ryan Bellone Commercial Director Date: 03/02/2022 Tested By Nicholas Howillrd Sensorientishtist Date: 02/22/2022

232 North Plaza Drive Nicholasville, KY 40356 +1-833-KCA-LABS https://kcalabs.com KDA Lic.# P_0058

Certificate of Analysis

4 of 8

cherry souffle

Sample ID: SA-220207-7072

Batch: 210050

Type: Finished Products Matrix: Concentrate - Distillate Received: 02/09/2022 Completed: 03/02/2022 Client KaliBloom Miami, FL USA

Pesticides by LC-MS/MS and GC-MS/MS

LOD (ppb)	LOQ (ppb)	Result (ppb)	Analyte	LOD (ppb)	LOQ (ppb)	Result (ppb)
30	100	ND	Hexythiazox	30	100	ND
30	100	ND	Imazalil	30	100	ND
30	100	ND	Imidacloprid	30	100	ND
30	100	ND	Malathion	30	100	ND
30	100	ND	Metalaxyl	30	100	ND
30	100	ND	Methiocarb	30	100	ND
30	100	ND	Methomyl	30	100	ND
30	100	ND	Mevinphos	30	100	ND
30	100	ND	Myclobutanil	30	100	ND
30	100	ND	Oxamyl	30	100	ND
30	100	ND	Paclobutrazol	30	100	ND
30	100	ND	Piperonyl Butoxide	30	100	ND
30	100	ND	Propoxur	30	100	ND
30	100	ND	Pyridaben	30	100	ND
30	100	ND	Spinetoram	30	100	ND
30	100	ND	Spinosad	30	100	ND
30	100	ND	Spiromesifen	30	100	ND
30	100	ND	Spirotetramat	30	100	ND
30	100	ND	Spiroxamine	30	100	ND
30	100	ND	Tebuconazole	30	100	ND
30	100	ND	Thiacloprid	30	100	ND
30	100	ND	Thiamethoxam	30	100	ND
30	100	ND	Trifloxystrobin	30	100	ND
	(ppb) 30 30 30 30 30 30 30 30 30 30 30 30 30	(ppb) (ppb) 30 100	(ppb) (ppb) (ppb) 30 100 ND 30	(ppb) (ppb) Analyte 30 100 ND Hexythiazox 30 100 ND Imidacloprid 30 100 ND Malathion 30 100 ND Metalaxyl 30 100 ND Methomyl 30 100 ND Methomyl 30 100 ND Myclobutanil 30 100 ND Myclobutanil 30 100 ND Oxamyl 30 100 ND Paclobutrazol 30 100 ND Piperonyl Butoxide 30 100 ND Pyridaben 30 100 ND Spinosad 30 100 ND Spiromesifen 30 100 ND Spirotetramat 30 100 ND Spiroxamine 30 100 ND Tebuconazole 30 100 ND Thiacloprid </td <td>(ppb) (ppb) Analyte (ppb) 30 100 ND Hexythiazox 30 30 100 ND Imazalil 30 30 100 ND Malathion 30 30 100 ND Metalaxyl 30 30 100 ND Methiocarb 30 30 100 ND Methomyl 30 30 100 ND Myclobutanil 30 30 100 ND Oxamyl 30 30 100 ND Paclobutrazol 30 30 100 ND Piperonyl Butoxide 30 30 100 ND Pyridaben 30 30 100 ND Spinetoram 30</td> <td> (ppb)</td>	(ppb) (ppb) Analyte (ppb) 30 100 ND Hexythiazox 30 30 100 ND Imazalil 30 30 100 ND Malathion 30 30 100 ND Metalaxyl 30 30 100 ND Methiocarb 30 30 100 ND Methomyl 30 30 100 ND Myclobutanil 30 30 100 ND Oxamyl 30 30 100 ND Paclobutrazol 30 30 100 ND Piperonyl Butoxide 30 30 100 ND Pyridaben 30 30 100 ND Spinetoram 30	(ppb)

ND = Not Detected; NT = Not Tested; LOD = Limit of Detection; LOQ = Limit of Quantitation; P = Pass; F = Fail; RL = Reporting Limit

Generated By: Ryan Bellone Commercial Director Date: 03/02/2022

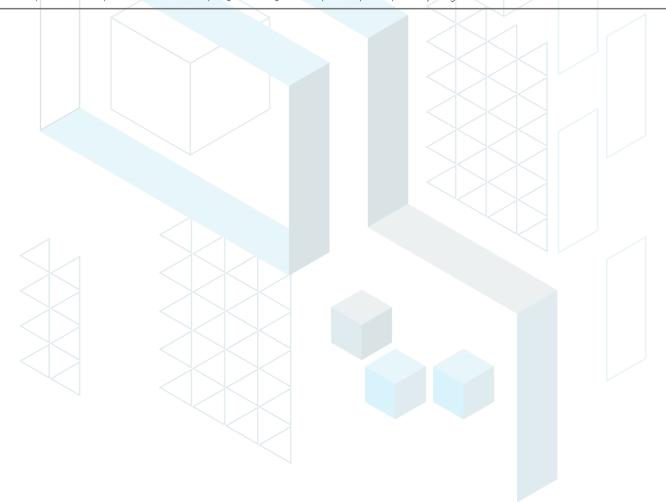
Tested By: Scott Caudill Senior Scientist Date: 02/25/2022

232 North Plaza Drive Nicholasville, KY 40356 +1-833-KCA-LABS https://kcalabs.com KDA Lic.# P_0058

Certificate of Analysis

5 of 8

cherry souffle


Sample ID: SA-220207-7072 Batch: 210050 Type: Finished Products Matrix: Concentrate - Distillate

Received: 02/09/2022 Completed: 03/02/2022 **Client** KaliBloom Miami, FL USA

Mycotoxins by LC-MS/MS

B1 1 5 ND B2 1 5 ND S ND	Analyte	LOD (ppb)	LOQ (ppb)	Result (ppb)
G1 1 5 ND	B1	1	5	ND
	B2	1	5	ND
C2 ND	G1	1	5	ND
GZ 1	G2	1	5	ND
Ochratoxin A 1 5 ND	Ochratoxin A	1	5	ND

ND = Not Detected; NT = Not Tested; LOD = Limit of Detection; LOQ = Limit of Quantitation; P = Pass; F = Fail; RL = Reporting Limit

Generated By: Ryan Bellone Commercial Director Date: 03/02/2022 Tested By: Scott Caudill Senior Scientist Date: 02/25/2022

+1-833-KCA-LABS 232 North Plaza Drive https://kcalabs.com Nicholasville, KY 40356 KDA Lic.# P_0058

Certificate of Analysis

6 of 8

cherry souffle

Sample ID: SA-220207-7072 Batch: 210050

Type: Finished Products Matrix: Concentrate - Distillate Received: 02/09/2022 Completed: 03/02/2022 Client KaliBloom Miami, FL USA

Microbials by PCR and Plating

Analyte	LOD (CFU/g)	Result (CFU/g)	Result (Qualitative)
Coliforms	1	ND	
Aerobic Bacteria	1	ND	
Salmonella			Not Detected per 1 gram
Total Enterobacteriaceae			Not Detected per 1 gram

ND = Not Detected; NT = Not Tested; LOD = Limit of Detection; LOQ = Limit of Quantitation; CFU = Colony Forming Units; P = Pass; F = Fail; RL = Reporting Limit

Generated By: Ryan Bellone Commercial Director Date: 03/02/2022

Tested By: Alex Morris Quality Assurance Manager Date: 02/16/2022

This product or substance has been tested by KCA Laboratories using validated testing methodologies and an ISO/IEC 170252017 accredited quality system. Values reported relate only to the product or substance tested. The reported result is based on a sample weight. Unless otherwise stated, results of tests performed on all quality control samples met criteria for acceptance established by KCA Laboratories. KCA Laboratories makes no claims as to the efficacy, safety or other risks associated with any detected or non-detected amounts of any substances reported herein. This Certificate of Analysis shall not be reproduced except in full, without the written approval of KCA Laboratories can provide measurement uncertainty upon request.

232 North Plaza Drive Nicholasville, KY 40356

+1-833-KCA-LABS https://kcalabs.com KDA Lic.# P_0058

Certificate of Analysis

7 of 8

cherry souffle

Sample ID: SA-220207-7072

Batch: 210050

Type: Finished Products Matrix: Concentrate - Distillate Received: 02/09/2022 Completed: 03/02/2022 Client KaliBloom Miami, FL USA

Residual Solvents by HS-GC-MS/MS

Analyte	LOD (ppm)	LOQ (ppm)	Result (ppm)	Analyte	LOD (ppm)	LOQ (ppm)	Result (ppm)
Acetone	167	500	ND	Ethylene Glycol	21	62	ND
Acetonitrile	14	41	ND	Ethylene Oxide	0.5		ND
Benzene	0.5	1	ND	Heptane	167	500	ND
Butane	167	500	ND	n-Hexane	10	29	ND
1-Butanol	167	500	ND	Isobutane	167	500	ND
2-Butanol	167	500	ND	Isopropyl Acetate	167	500	ND
2-Butanone	167	500	ND	Isopropyl Alcohol	167	500	ND
Chloroform	2	6	ND	Isopropylbenzene	167	500	ND
Cyclohexane	129	388	ND	Methanol	100	300	ND
1,2-Dichloroethane	0.5	1	ND	2-Methylbutane	10	29	ND
1,2-Dimethoxyethane	4	10	ND	Methylene Chloride	20	60	ND
Dimethyl Sulfoxide	167	500	ND	2-Methylpentane	10	29	ND
N,N-Dimethylacetamide	37	109	ND	3-Methylpentane	10	29	ND
2,2-Dimethylbutane	10	29	ND	n-Pentane	167	500	ND
2,3-Dimethylbutane	10	29	ND	1-Pentanol	167	500	ND
N,N-Dimethylformamide	30	88	ND	n-Propane	167	500	ND
2,2-Dimethylpropane	167	500	ND	1-Propanol	167	500	ND
1,4-Dioxane	13	38	ND	Pyridine	7	20	ND
Ethanol	167	500	ND	Tetrahydrofuran	24	72	ND
2-Ethoxyethanol	6	16	ND	Toluene	30	89	ND
Ethyl Acetate	167	500	ND	Trichloroethylene	3	8	ND
Ethyl Ether	167	500	ND	Tetramethylene Sulfone	6	16	ND
Ethylbenzene	3	7	ND	Xylenes (o-, m-, and p-)	73	217	ND

ND = Not Detected; NT = Not Tested; LOD = Limit of Detection; LOQ = Limit of Quantitation; P = Pass; F = Fail; RL = Reporting Limit

Commercial Director

Date: 03/02/2022

Generated By: Ryan Bellone Senior Scientist

Tested By: Scott Caudill Date: 02/17/2022

232 North Plaza Drive Nicholasville, KY 40356 +1-833-KCA-LABS https://kcalabs.com KDA Lic.# P_0058

Certificate of Analysis

8 of 8

cherry souffle

Sample ID: SA-220207-7072

Batch: 210050

Type: Finished Products Matrix: Concentrate - Distillate Received: 02/09/2022 Completed: 03/02/2022 **Client** KaliBloom Miami, FL USA

Reporting Limit Appendix

Heavy Metals - Colorado CDPHE

Analyte	Limit (ppb) Analyte	Limit (ppb)
Arsenic	1500 Lead	500
Cadmium	500 Mercury	1500

Microbials - Colorado CDPHE

Analyte	Limit (CFU g)	Analyte	Limit (CFU/ g)
Coliforms	100	Aerobic Bacteria	10000

Residual Solvents - USP 467

Acetone	5000	Ethylene Glycol	
		Edityleric Ciycol	620
Acetonitrile	410	Ethylene Oxide	1
Benzene	2	Heptane	5000
Butane	5000	n-Hexane	290
1-Butanol	5000	Isobutane	5000
2-Butanol	5000	Isopropyl Acetate	5000
2-Butanone	5000	Isopropyl Alcohol	5000
Chloroform	60	Isopropylbenzene	5000
Cyclohexane	3880	Methanol	3000
1,2-Dichloroethane	5	2-Methylbutane	290
1,2-Dimethoxyethane	100	Methylene Chloride	600
Dimethyl Sulfoxide	5000	2-Methylpentane	290
N,N-Dimethylacetamide	1090	3-Methylpentane	290
2,2-Dimethylbutane	290	n-Pentane	5000
2,3-Dimethylbutane	290	1-Pentanol	5000
N,N-Dimethylformamide	880	n-Propane	5000
2,2-Dimethylpropane	5000	1-Propanol	5000
1,4-Dioxane	380	Pyridine	200
Ethanol	5000	Tetrahydrofuran	720
2-Ethoxyethanol	160	Toluene	890
Ethyl Acetate	5000	Trichloroethylene	80
Ethyl Ether	5000	Tetramethylene Sulfone	160
Ethylbenzene	70	Xylenes (o-, m-, and p-)	2170

Pesticides - CA DCC

Analyte	Limit (ppb)	Analyte	Limit (ppb)
Acetamiprid	5000	Imidacloprid	3000
Aldicarb	30	Malathion	5000
Azoxystrobin	40000	Metalaxyl	15000
Bifenazate	5000	Methiocarb	30
Boscalid	10000	Methomyl	100
Carbaryl	500	Mevinphos	30
Carbofuran	30	Myclobutanil	9000
Chloranthraniliprole	40000	Oxamyl	200
Chlorpyrifos	30	Paclobutrazol	30
Coumaphos	30	Piperonyl Butoxide	8000
Diazinon	200	Propoxur	30
Dichlorvos	30	Pyridaben	3000
Dimethoate	30	Spinetoram	3000
Dimethomorph	20000	Spinosad	3000
Ethoprophos	30	Spiromesifen	12000
Etoxazole	1500	Spirotetramat	13000
Fenhexamid	10000	Spiroxamine	30
Fenoxycarb	30	Tebuconazole	2000
Fenpyroximate	2000	Thiacloprid	30
Fipronil	30	Thiamethoxam	4500
Flonicamid	2000	Trifloxystrobin	30000

Mycotoxins - Colorado CDPHE

Analyte	Limit (ppm) A	Limit (ppm)	
BI	5 B2	2	5
G1	5 G2	2	5
Ochratoxin A	5		

Pesticides - CA DCC

Analyte	Limit (ppb) Ana	Limit (ppb) Analyte			
Abamectin	300 Hex	ythiazox	2000		
Acephate	5000 Imaz	zalil	30		

232 North Plaza Drive Nicholasville, KY 40356 +1-833-KCA-LABS https://kcalabs.com KDA Lic.# P_0058

Certificate of Analysis

1 of 8

gmo cookies

Sample ID: SA-220207-7073

Batch: 210050

Type: Finished Products Matrix: Concentrate - Distillate Received: 02/09/2022 Completed: 02/24/2022 **Client** KaliBloom Miami, FL USA

Summary

Test	Date Tested	Status
Cannabinoids	02/24/2022	Tested
Cannabinoids (Additional)	02/24/2022	Tested
Foreign Matter	02/09/2022	Tested
Heavy Metals	02/14/2022	Tested
Microbials	02/16/2022	Tested
Mycotoxins	02/24/2022	Tested
Pesticides	02/24/2022	Tested
Residual Solvents	02/17/2022	Tested
Terpenes	02/22/2022	Tested

Cannabinoids by HPLC-PDA, LC-MS/MS, and/or GC-MS/MS

Γ	ND	0.121 %	0.121 %	Not Tested	Not Detected	Yes
	Total Δ9-THC	CBN	Total Cannabinoids	Moisture Content	Foreign Matter	Internal Standard Normalization
Ana	alyte LO		t Result			

									Normalization
Analyte	LOD (%)	LOQ (%)	Result (%)	Result (mg/g)					
CBC	0.0095	0.0284	ND	ND	uAU		SA-220207-7	7073	
CBCA	0.0181	0.0543	ND	ND	-1				
CBCV	0.006	0.018	ND	ND	500000				I
CBD	0.0081	0.0242	ND	ND	_				
CBDA	0.0043	0.013	ND	ND	1				
CBDV	0.0061	0.0182	ND	ND	400000				
CBDVA <	0.0021	0.0063	ND	ND				7	
CBG	0.0057	0.0172	ND	ND	200000				
CBGA	0.0049	0.0147	ND	ND	300000				
CBL	0.0112	0.0335	ND	ND	1				
CBLA	0.0124	0.0371	ND	ND	200000				
CBN <	0.0056	0.0169	0.121	1.21	200000				ard
CBNA	0.006	0.0181	ND	ND] [internal Standard
∆8-THC <	0.0104	0.0312	ND	ND	100000				iternal
∆9-THC	0.0076	0.0227	ND	ND					
∆9-THCA	0.0084	0.0251 <	ND	ND	-		z		\ \ \ \ \ \
∆9-THCV	0.0069	0.0206	ND	ND	0			J V	
∆9-THCVA	0.0062	0.0186	ND	ND	_	25		7.5	100
Total Δ9-THC			ND	ND		2.5	5.0	7.5	10.0
Total CBD			ND	ND					
Total			0.121	1.21					

ND = Not Detected; NT = Not Tested; LOD = Limit of Detection; LOQ = Limit of Quantitation; RL = Reporting Limit; Δ = Delta; Total Δ 9-THC = Δ 9-THC + Δ 9-THC; Total CBD = CBDA * 0.877 + CBD;

Generated By: Ryan Bellone Commercial Director Date: 02/24/2022 Testéd By: Jared Burkhart Technical Manager Date: 02/24/2022

ISO/IEC 17025:2017 Accredited Accreditation #108651

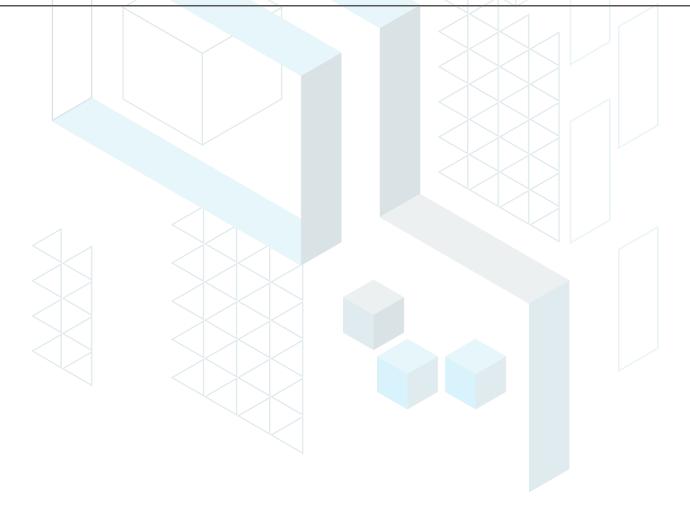
KCA Laboratories 232 North Plaza Drive

+1-833-KCA-LABS https://kcalabs.com Nicholasville, KY 40356 KDA Lic.# P_0058

Certificate of Analysis

2 of 8

gmo cookies


Sample ID: SA-220207-7073 Batch: 210050 Type: Finished Products Matrix: Concentrate - Distillate

Received: 02/09/2022 Completed: 02/24/2022 Client KaliBloom Miami, FL USA

Cannabinoids by HPLC-PDA, LC-MS/MS, and/or GC-MS/MS

Analyte	LOD (%)	LOQ (%)	Result (%)	Result (mg/g)
(6aR,9R,10aR)-HHC			42.3	423
(6aR,9S,10aR)-HHC			55.2	552
Total Additional Cannabinoids			97.5	975
Total			97.6	976

ND = Not Detected; NT = Not Tested; LOD = Limit of Detection; LOQ = Limit of Quantitation; RL = Reporting Limit; Δ = Delta; Total Δ9-THC = Δ9-THCA * 0.877 + Δ9-THC; Total CBD = CBDA * 0.877 + CBD;

Generated By: Ryan Bellone Commercial Director Date: 02/24/2022

Tested By: Jasper van Heemst **Principal Scientist** Date: 02/24/2022

ISO/IEC 17025:2017 Accredited Accreditation #108651

232 North Plaza Drive Nicholasville, KY 40356 +1-833-KCA-LABS https://kcalabs.com KDA Lic.# P_0058

Certificate of Analysis

3 of 8

gmo cookies

Sample ID: SA-220207-7073 Batch: 210050

Type: Finished Products Matrix: Concentrate - Distillate Received: 02/09/2022 Completed: 02/24/2022 **Client** KaliBloom Miami, FL USA

Terpenes by HS-GC-MS/MS

Analyte	LOD (%)	LOQ (%)	Result (%)	Analyte	LOD (%)	LOQ (%)	Result (%)
α -Bisabolol	0.00001	0.00005	0.142255	Limonene	0.00001	0.00005	0.526407
(+)-Borneol	0.00001	0.00005	ND	Linalool	0.00001	0.00005	0.09824
Camphene	0.00001	0.00005	0.013606	β-myrcene	0.00001	0.00005	0.500514
Camphor	0.00001	0.00005	0.006964	Nerol	0.00001	0.00005	ND
3-Carene	0.00001	0.00005	0.028012	cis-Nerolidol	0.00001	0.00005	ND
β-Caryophyllene	0.00001	0.00005	0.072954	trans-Nerolidol	0.00001	0.00005	ND
Caryophyllene Oxide	0.00001	0.00005	ND	Ocimene	0.00001	0.00005	ND
α -Cedrene	0.00001	0.00005	0.014994	α-Phellandrene	0.00001	0.00005	0.064502
Cedrol	0.00001	0.00005	ND	α-Pinene	0.00001	0.00005	0.183623
Eucalyptol	0.00001	0.00005	ND	β-Pinene	0.00001	0.00005	0.218091
Fenchone	0.00001	0.00005	ND	Pulegone	0.00001	0.00005	ND
Fenchyl Alcohol	0.00001	0.00005	0.076141	Sabinene	0.00001	0.00005	ND
Geraniol	0.00001	0.00005	ND	Sabinene Hydrate	0.00001	0.00005	ND
Geranyl Acetate	0.00001	0.00005	ND	α -Terpinene	0.00001	0.00005	0.026546
Guaiol	0.00001	0.00005	ND	γ-Terpinene	0.00001	0.00005	0.004387
Hexadhydrothymol	0.00001	0.00005	0.01046	α-Terpineol	0.00001	0.00005	0.058734
lpha-Humulene	0.00001	0.00005	0.075435	γ-Terpineol	0.00001	0.00005	ND
Isoborneol	0.00001	0.00005	0.014156	Terpinolene	0.00001	0.00005	1.13867
Isopulegol	0.00001	0.00005	ND	Total Terpenes (%)			3.27

ND = Not Detected; NT = Not Tested; LOD = Limit of Detection; LOQ = Limit of Quantitation; P = Pass; F = Fail; RL = Reporting Limit

Heavy Metals by ICP-MS

Analyte	LOD (ppb)	LOQ (ppb)	Result (ppb)	
Arsenic	2	20	ND	
Cadmium	1	20	ND	
Lead	2	20	ND	
Mercury	12	50	ND	

 $ND = Not \ Detected; \ NT = Not \ Tested; \ LOD = Limit \ of \ Detection; \ LOQ = Limit \ of \ Quantitation; \ P = Pass; \ F = Fail; \ RL = Reporting \ Limit \ of \ Pass \ Pas$

Generated By: Ryan Bellone Commercial Director Date: 02/24/2022 Tested By Nicholas Howillrd Sensorestientist Date: 02/12/2022

+1-833-KCA-LABS 232 North Plaza Drive https://kcalabs.com Nicholasville, KY 40356 KDA Lic.# P_0058

Certificate of Analysis

4 of 8

gmo cookies

Sample ID: SA-220207-7073

Batch: 210050

Type: Finished Products Matrix: Concentrate - Distillate Received: 02/09/2022 Completed: 02/24/2022 Client KaliBloom Miami, FL USA

Pesticides by LC-MS/MS and GC-MS/MS

Analyte	LOD (ppb)	LOQ (ppb)	Result (ppb)	Analyte	LOD (ppb)	LOQ (ppb)	Result (ppb)
Abamectin	30	100	ND	Hexythiazox	30	100	ND
Acephate	30	100	ND	Imazalil	30	100	ND
Acetamiprid	30	100	ND	Imidacloprid	30	100	ND
Aldicarb	30	100	ND	Kresoxim methyl	30	100	ND
Azoxystrobin	30	100	ND	Malathion	30	100	ND
Boscalid	30	100	ND	Metalaxyl	30	100	ND
Carbaryl	30	100	ND	Methiocarb	30	100	ND
Carbofuran	30	100	ND	Methomyl	30	100	ND
Chloranthraniliprole	30	100	ND	Mevinphos	30	100	ND
Chlorfenapyr	30	100	ND	Myclobutanil	30	100	ND
Chlorpyrifos	30	100	ND	Oxamyl	30	100	ND
Coumaphos	30	100	ND	Paclobutrazol	30	100	ND
Daminozide	30	100	ND	Piperonyl Butoxide	30	100	ND
Diazinon	30	100	ND	Prallethrin	30	100	ND
Dichlorvos	30	100	ND	Propiconazole	30	100	ND
Dimethoate	30	100	ND	Propoxur	30	100	ND
Dimethomorph	30	100	ND	Pyridaben	30	100	ND
Ethoprophos	30	100	ND	Spinetoram	30	100	ND
Etofenprox	30	100	ND	Spinosad	30	100	ND
Etoxazole	30	100	ND	Spiromesifen	30	100	ND
Fenhexamid	30	100	ND	Spirotetramat	30	100	ND
Fenoxycarb	30	100	ND	Spiroxamine	30	100	ND
Fenpyroximate	30	100	ND	Tebuconazole	30	100	ND
Fipronil	30	100	ND	Thiacloprid	30	100	ND
Flonicamid	30	100	ND	Thiamethoxam	30	100	ND
Fludioxonil	30	100	ND	Trifloxystrobin	30	100	ND

ND = Not Detected; NT = Not Tested; LOD = Limit of Detection; LOQ = Limit of Quantitation; P = Pass; F = Fail; RL = Reporting Limit

Generated By: Ryan Bellone

Commercial Director

Testéd By: Jared Burkhart Technical Manager Date: 02/24/2022

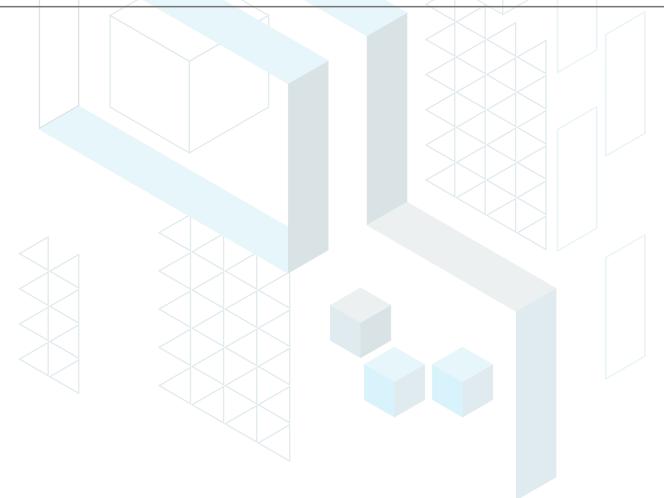
KCA Laboratories 232 North Plaza Drive

+1-833-KCA-LABS https://kcalabs.com Nicholasville, KY 40356 KDA Lic.# P_0058

Certificate of Analysis

5 of 8

gmo cookies


Sample ID: SA-220207-7073 Batch: 210050 Type: Finished Products Matrix: Concentrate - Distillate

Received: 02/09/2022 Completed: 02/24/2022 Client KaliBloom Miami, FL USA

Mycotoxins by LC-MS/MS

B1 1 5 ND B2 1 5 ND S ND	Analyte	LOD (ppb)	LOQ (ppb)	Result (ppb)
G1 1 5 ND	B1	1	5	ND
	B2	1	5	ND
C2 ND	G1	1	5	ND
GZ 1	G2	1	5	ND
Ochratoxin A 1 5 ND	Ochratoxin A	1	5	ND

ND = Not Detected; NT = Not Tested; LOD = Limit of Detection; LOQ = Limit of Quantitation; P = Pass; F = Fail; RL = Reporting Limit

Generated By: Ryan Bellone Commercial Director Date: 02/24/2022

Testéd By: Jared Burkhart Technical Manager Date: 02/24/2022

KCA Laboratories 232 North Plaza Drive Nicholasville, KY 40356

+1-833-KCA-LABS https://kcalabs.com KDA Lic.# P_0058

Certificate of Analysis

6 of 8

gmo cookies

Sample ID: SA-220207-7073

Batch: 210050

Type: Finished Products Matrix: Concentrate - Distillate

Total Enterobacteriaceae

Received: 02/09/2022 Completed: 02/24/2022 **Client** KaliBloom Miami, FL USA

Not Detected per 1 gram

Microbials by PCR and Plating

Analyte	LOD (CFU/g)	Result (CFU/g)	Result (Qualitative)
Coliforms	1	ND	
Aerobic Bacteria	1	ND	
Salmonella			Not Detected per 1 gram

ND = Not Detected; NT = Not Tested; LOD = Limit of Detection; LOQ = Limit of Quantitation; CFU = Colony Forming Units; P = Pass; F = Fail; RL = Reporting Limit

Generated By: Ryan Bellone Commercial Director Date: 02/24/2022 Tested By: Alex Morris Quality Assurance Manager Date: 02/16/2022

KCA Laboratories 232 North Plaza Drive Nicholasville, KY 40356

+1-833-KCA-LABS https://kcalabs.com KDA Lic.# P_0058

Certificate of Analysis

7 of 8

gmo cookies

Sample ID: SA-220207-7073

Batch: 210050

Type: Finished Products Matrix: Concentrate - Distillate Received: 02/09/2022 Completed: 02/24/2022 Client KaliBloom Miami, FL USA

Residual Solvents by HS-GC-MS/MS

Analyte	LOD (ppm)	LOQ (ppm)	Result (ppm)	Analyte	LOD (ppm)	LOQ (ppm)	Result (ppm)
Acetone	167	500	ND	Ethylene Glycol	21	62	ND
Acetonitrile	14	41	ND	Ethylene Oxide	0.5	1/1	ND
Benzene	0.5	1	ND	Heptane	167	500	ND
Butane	167	500	ND	n-Hexane	10	29	ND
1-Butanol	167	500	ND	Isobutane	167	500	ND
2-Butanol	167	500	ND	Isopropyl Acetate	167	500	ND
2-Butanone	167	500	ND	Isopropyl Alcohol	167	500	ND
Chloroform	2	6	ND	Isopropylbenzene	167	500	ND
Cyclohexane	129	388	ND	Methanol	100	300	ND
1,2-Dichloroethane	0.5	1	ND	2-Methylbutane	10	29	ND
1,2-Dimethoxyethane	4	10	ND	Methylene Chloride	20	60	ND
Dimethyl Sulfoxide	167	500	ND	2-Methylpentane	10	29	ND
N,N-Dimethylacetamide	37	109	ND	3-Methylpentane	10	29	ND
2,2-Dimethylbutane	10	29	ND	n-Pentane	167	500	ND
2,3-Dimethylbutane	10	29	ND	1-Pentanol	167	500	ND
N,N-Dimethylformamide	30	88	ND	n-Propane	167	500	ND
2,2-Dimethylpropane	167	500	ND	1-Propanol	167	500	ND
1,4-Dioxane	13	38	ND	Pyridine	7	20	ND
Ethanol	167	500	ND	Tetrahydrofuran	24	72	ND
2-Ethoxyethanol	6	16	ND	Toluene	30	89	ND
Ethyl Acetate	167	500	ND	Trichloroethylene	3	8	ND
Ethyl Ether	167	500	ND	Tetramethylene Sulfone	6	16	ND
Ethylbenzene	3	7	ND	Xylenes (o-, m-, and p-)	73	217	ND

ND = Not Detected; NT = Not Tested; LOD = Limit of Detection; LOQ = Limit of Quantitation; P = Pass; F = Fail; RL = Reporting Limit

Generated By: Ryan Bellone Commercial Director Date: 02/24/2022

Tested By: Scott Caudill Senior Scientist Date: 02/17/2022

232 North Plaza Drive Nicholasville, KY 40356 +1-833-KCA-LABS https://kcalabs.com KDA Lic.# P_0058

Certificate of Analysis

8 of 8

gmo cookies

Sample ID: SA-220207-7073

Batch: 210050

Type: Finished Products Matrix: Concentrate - Distillate Received: 02/09/2022 Completed: 02/24/2022 **Client** KaliBloom Miami, FL USA

Reporting Limit Appendix

Heavy Metals - Colorado CDPHE

Analyte	Limit (ppb) Analyte	Limit (ppb)
Arsenic	1500 Lead	500
Cadmium	500 Mercury	1500

Microbials - Colorado CDPHE

Analyte	Limit (CFU/ g) Analyte	Limit (CFU/ g)
Coliforms	100 Aerobic Bacteria	10000

Residual Solvents - USP 467

Analyte	Limit (ppm)	Analyte	Limit (ppm
Acetone	5000	Ethylene Glycol	620
Acetonitrile	410	Ethylene Oxide	1
Benzene	2	Heptane	5000
Butane	5000	n-Hexane	290
1-Butanol	5000	Isobutane	5000
2-Butanol	5000	Isopropyl Acetate	5000
2-Butanone	5000	Isopropyl Alcohol	5000
Chloroform	60	Isopropylbenzene	5000
Cyclohexane	3880	Methanol	3000
1,2-Dichloroethane	5	2-Methylbutane	290
1,2-Dimethoxyethane	100	Methylene Chloride	600
Dimethyl Sulfoxide	5000	2-Methylpentane	290
N,N-Dimethylacetamide	1090	3-Methylpentane	290
2,2-Dimethylbutane	290	n-Pentane	5000
	290	1-Pentanol	5000
N,N-Dimethylformamide	880	n-Propane	5000
2,2-Dimethylpropane	5000	1-Propanol	5000
1,4-Dioxane	380	Pyridine	200
Ethanol	5000	Tetrahydrofuran	720
2-Ethoxyethanol	160	Toluene	890
Ethyl Acetate	5000	Trichloroethylene	80
Ethyl Ether	5000	Tetramethylene Sulfone	160
Ethylbenzene	70	Xylenes (o-, m-, and p-)	2170

Pesticides - CA DCC

Analyte	Limit (ppb)	Analyte	Limit (ppb)
Acetamiprid	5000	Imidacloprid	3000
Aldicarb	30	Kresoxim methyl	1000
Azoxystrobin	40000	Malathion	5000
Boscalid	10000	Metalaxyl	15000
Carbaryl	500	Methiocarb	30
Carbofuran	30	Methomyl	100
Chloranthraniliprole	40000	Mevinphos	30
Chlorfenapyr	30	Myclobutanil	9000
Chlorpyrifos	30	Oxamyl	200
Coumaphos	30	Paclobutrazol	30
Daminozide	30	Piperonyl Butoxide	8000
Diazinon	200	Prallethrin	400
Dichlorvos	30	Propiconazole	20000
Dimethoate	30	Propoxur	30
Dimethomorph	20000	Pyridaben	3000
Ethoprophos	30	Spinetoram	3000
Etofenprox	30	Spinosad	3000
Etoxazole	1500	Spiromesifen	12000
Fenhexamid	10000	Spirotetramat	13000
Fenoxycarb	30	Spiroxamine	30
Fenpyroximate	2000	Tebuconazole	2000
Fipronil	30	Thiacloprid	30
Flonicamid	2000	Thiamethoxam	4500
Fludioxonil	30000	Trifloxystrobin	30000

Mycotoxins - Colorado CDPHE

Analyte	Limit (ppm) Analyte	Limit (ppm)
B1	5 B2	5
G1	5 G2	5
Ochratoxin A	5	

Pesticides - CA DCC

Analyte	Limit (ppb) Analyte	Limit (ppb)
Abamectin	300 Hexythiazox	2000
Acephate	5000 Imazalil	30

232 North Plaza Drive Nicholasville, KY 40356 +1-833-KCA-LABS https://kcalabs.com KDA Lic.# P_0058

Certificate of Analysis

1 of 8

pop rocks

Sample ID: SA-220207-7074

Batch: 210050

Type: Finished Products Matrix: Concentrate - Distillate Received: 02/09/2022 Completed: 02/24/2022 **Client**KaliBloom
Miami, FL
USA

Summary

Test	Date Tested	Status
Cannabinoids	02/24/2022	Tested
Cannabinoids (Additional)	02/24/2022	Tested
Foreign Matter	02/09/2022	Tested
Heavy Metals	02/14/2022	Tested
Microbials	02/16/2022	Tested
Mycotoxins	02/24/2022	Tested
Pesticides	02/24/2022	Tested
Residual Solvents	02/17/2022	Tested
Terpenes	02/22/2022	Tested

Cannabinoids by HPLC-PDA, LC-MS/MS, and/or GC-MS/MS

ND	0.115 %	0.220 %	Not Tested	Not Detected	Yes
Total Δ9-THC	CBN	Total Cannabinoids	Moisture Content	Foreign Matter	Internal Standard Normalization

									Normalization
Analyte	LOD (%)	LOQ (%)	Result (%)	Result (mg/g)					
CBC	0.0095	0.0284	ND	ND	uAU		SA-2	20207-7074	
BCA	0.0181	0.0543	ND	ND					
CBCV	0.006	0.018	ND	ND	500000				
BD	0.0081	0.0242	ND	ND	-				
BDA	0.0043	0.013	ND	ND	400000				
BDV	0.0061	0.0182	ND	ND	400000				
BDVA	0.0021	0.0063	ND	ND					
:BG	0.0057	0.0172	ND	ND	300000				
BGA	0.0049	0.0147	ND	ND	300000				
BL	0.0112	0.0335	ND	ND					
BLA	0.0124	0.0371	ND	ND	200000				
:BN	0.0056	0.0169	0.115	1.15	-				ard
BNA	0.006	0.0181	ND	ND]]				Standard
.8-THC	0.0104	0.0312	0.105	1.05	100000				terna
9-THC	0.0076	0.0227	ND	ND					Ā
9-THCA	0.0084	0.0251 <	ND	ND	-		z	д8-1НС	
9-THCV	0.0069	0.0206	ND	ND	0			₩	
9-THCVA	0.0062	0.0186	ND	ND	-				
otal Δ9-THC			ND	ND		2.5	5.0	7.5	10.0
otal CBD			ND	ND					
Total			0.220	2 20					

ND = Not Detected; NT = Not Tested; LOD = Limit of Detection; LOQ = Limit of Quantitation; RL = Reporting Limit; Δ = Delta; Total Δ 9-THC = Δ 9-THC + Δ 9-THC; Total CBD = CBDA * 0.877 + CBD;

Generated By: Ryan Bellone Commercial Director Date: 02/24/2022 Testéd By: Jared Burkhart Technical Manager Date: 02/24/2022

ISO/IEC 17025:2017 Accredited Accreditation #108651

KCA Laboratories 232 North Plaza Drive

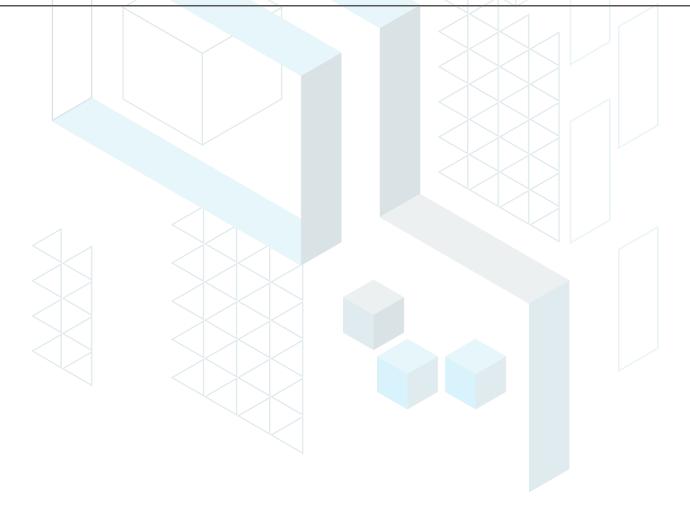
Nicholasville, KY 40356

+1-833-KCA-LABS https://kcalabs.com KDA Lic.# P_0058

Certificate of Analysis

2 of 8

pop rocks


Sample ID: SA-220207-7074 Batch: 210050 Type: Finished Products Matrix: Concentrate - Distillate

Received: 02/09/2022 Completed: 02/24/2022 **Client** KaliBloom Miami, FL USA

Cannabinoids by HPLC-PDA, LC-MS/MS, and/or GC-MS/MS

Analyte	LOD (%)	LOQ (%)	Result (%)	Result (mg/g)
(6aR,9R,10aR)-HHC			42.2	422
(6aR,9S,10aR)-HHC			54.8	548
Total Additional Cannabinoids			97.0	970
Total			97.3	973

ND = Not Detected; NT = Not Tested; LOD = Limit of Detection; LOQ = Limit of Quantitation; RL = Reporting Limit; Δ = Delta; Total Δ9-THC = Δ9-THCA * 0.877 + Δ9-THC; Total CBD = CBDA * 0.877 + CBD;

Generated By: Ryan Bellone Commercial Director Date: 02/24/2022 Tested By: Jasper van Heemst Principal Scientist Date: 02/24/2022

ISO/IEC 17025:2017 Accredited Accreditation #108651

232 North Plaza Drive Nicholasville, KY 40356 +1-833-KCA-LABS https://kcalabs.com KDA Lic.# P_0058

Certificate of Analysis

3 of 8

pop rocks

Sample ID: SA-220207-7074 Batch: 210050 Type: Finished Products Matrix: Concentrate - Distillate

Received: 02/09/2022 Completed: 02/24/2022 **Client** KaliBloom Miami, FL USA

Terpenes by HS-GC-MS/MS

Analyte	LOD (%)	LOQ (%)	Result (%)	Analyte	LOD (%)	LOQ (%)	Result (%)
α -Bisabolol	0.00001	0.00005	ND	Limonene	0.00001	0.00005	1.27614
(+)-Borneol	0.00001	0.00005	ND	Linalool	0.00001	0.00005	0.188489
Camphene	0.00001	0.00005	0.046747	β-myrcene	0.00001	0.00005	0.600034
Camphor	0.00001	0.00005	ND	Nerol	0.00001	0.00005	ND
3-Carene	0.00001	0.00005	0.015392	cis-Nerolidol	0.00001	0.00005	ND
β-Caryophyllene	0.00001	0.00005	0.22238	trans-Nerolidol	0.00001	0.00005	ND
Caryophyllene Oxide	0.00001	0.00005	ND	Ocimene	0.00001	0.00005	0.085239
α -Cedrene	0.00001	0.00005	ND	α-Phellandrene	0.00001	0.00005	ND
Cedrol	0.00001	0.00005	ND	α-Pinene	0.00001	0.00005	0.140041
Eucalyptol	0.00001	0.00005	ND	β-Pinene	0.00001	0.00005	0.135911
Fenchone	0.00001	0.00005	0.02186	Pulegone	0.00001	0.00005	ND
Fenchyl Alcohol	0.00001	0.00005	0.057927	Sabinene	0.00001	0.00005	0.028338
Geraniol	0.00001	0.00005	ND	Sabinene Hydrate	0.00001	0.00005	ND
Geranyl Acetate	0.00001	0.00005	ND	α -Terpinene	0.00001	0.00005	0.025217
Guaiol	0.00001	0.00005	ND	γ-Terpinene	0.00001	0.00005	0.02522
Hexadhydrothymol	0.00001	0.00005	ND	α-Terpineol	0.00001	0.00005	ND
lpha-Humulene	0.00001	0.00005	0.225068	γ-Terpineol	0.00001	0.00005	ND
Isoborneol	0.00001	0.00005	ND	Terpinolene	0.00001	0.00005	0.051328
Isopulegol	0.00001	0.00005	0.034911	Total Terpenes (%)			3.18

ND = Not Detected; NT = Not Tested; LOD = Limit of Detection; LOQ = Limit of Quantitation; P = Pass; F = Fail; RL = Reporting Limit

Heavy Metals by ICP-MS

Analyte	LOD (ppb)	LOQ (ppb)	Result (ppb)
Arsenic	2	20	ND
Cadmium	1	20	ND
Lead	2	20	ND
Mercury	12	50	ND

 $ND = Not \ Detected; \ NT = Not \ Tested; \ LOD = Limit \ of \ Detection; \ LOQ = Limit \ of \ Quantitation; \ P = Pass; \ F = Fail; \ RL = Reporting \ Limit \ of \ Pass \ Pas$

Generated By: Ryan Bellone Commercial Director Date: 02/24/2022 Tested By Nicholas Howillrd Senson artisatist Date: 02/12/2022

+1-833-KCA-LABS 232 North Plaza Drive https://kcalabs.com Nicholasville, KY 40356 KDA Lic.# P_0058

Certificate of Analysis

4 of 8

pop rocks

Sample ID: SA-220207-7074 Batch: 210050

Type: Finished Products Matrix: Concentrate - Distillate Received: 02/09/2022 Completed: 02/24/2022 Client KaliBloom Miami, FL USA

Pesticides by LC-MS/MS and GC-MS/MS

Analyte	LOD (ppb)	LOQ (ppb)	Result (ppb)	Analyte	LOD (ppb)	LOQ (ppb)	Result (ppb)
Abamectin	30	100	ND	Hexythiazox	30	100	ND
Acephate	30	100	ND	Imazalil	30	100	ND
Acetamiprid	30	100	ND	Imidacloprid	30	100	ND
Aldicarb	30	100	ND	Kresoxim methyl	30	100	ND
Azoxystrobin	30	100	ND	Malathion	30	100	ND
Boscalid	30	100	ND	Metalaxyl	30	100	ND
Carbaryl	30	100	ND	Methiocarb	30	100	ND
Carbofuran	30	100	ND	Methomyl	30	100	ND
Chloranthraniliprole	30	100	ND	Mevinphos	30	100	ND
Chlorfenapyr	30	100	ND	Myclobutanil	30	100	ND
Chlorpyrifos	30	100	ND	Oxamyl	30	100	ND
Coumaphos	30	100	ND	Paclobutrazol	30	100	ND
Daminozide	30	100	ND	Piperonyl Butoxide	30	100	ND
Diazinon	30	100	ND	Prallethrin	30	100	ND
Dichlorvos	30	100	ND	Propiconazole	30	100	ND
Dimethoate	30	100	ND	Propoxur	30	100	ND
Dimethomorph	30	100	ND	Pyridaben	30	100	ND
Ethoprophos	30	100	ND	Spinetoram	30	100	ND
Etofenprox	30	100	ND	Spinosad	30	100	ND
Etoxazole	30	100	ND	Spiromesifen	30	100	ND
Fenhexamid	30	100	ND	Spirotetramat	30	100	ND
Fenoxycarb	30	100	ND	Spiroxamine	30	100	ND
Fenpyroximate	30	100	ND	Tebuconazole	30	100	ND
Fipronil	30	100	ND	Thiacloprid	30	100	ND
Flonicamid	30	100	ND	Thiamethoxam	30	100	ND
Fludioxonil	30	100	ND	Trifloxystrobin	30	100	ND

ND = Not Detected; NT = Not Tested; LOD = Limit of Detection; LOQ = Limit of Quantitation; P = Pass; F = Fail; RL = Reporting Limit

Generated By: Ryan Bellone Commercial Director

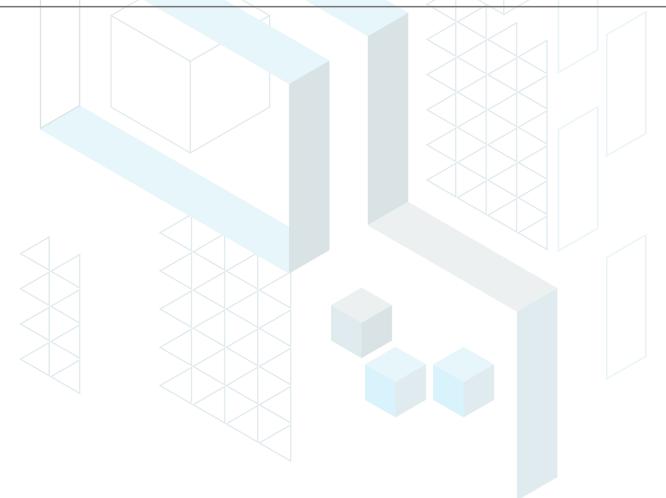
Testéd By: Jared Burkhart Technical Manager Date: 02/24/2022

232 North Plaza Drive Nicholasville, KY 40356 +1-833-KCA-LABS https://kcalabs.com KDA Lic.# P_0058

Certificate of Analysis

5 of 8

pop rocks


Sample ID: SA-220207-7074 Batch: 210050 Type: Finished Products Matrix: Concentrate - Distillate

Received: 02/09/2022 Completed: 02/24/2022 **Client** KaliBloom Miami, FL USA

Mycotoxins by LC-MS/MS

B1 1 5 ND B2 1 5 ND S ND	Analyte	LOD (ppb)	LOQ (ppb)	Result (ppb)
G1 1 5 ND	B1	1	5	ND
	B2	1	5	ND
C2 ND	G1	1	5	ND
GZ 1	G2	1	5	ND
Ochratoxin A 1 5 ND	Ochratoxin A	1	5	ND

ND = Not Detected; NT = Not Tested; LOD = Limit of Detection; LOQ = Limit of Quantitation; P = Pass; F = Fail; RL = Reporting Limit

Generated By: Ryan Bellone Commercial Director Date: 02/24/2022 Tested By: Jared Burkhart Technical Manager Date: 02/24/2022

KCA Laboratories 232 North Plaza Drive

Nicholasville, KY 40356

+1-833-KCA-LABS https://kcalabs.com KDA Lic.# P_0058

Certificate of Analysis

6 of 8

pop rocks

Sample ID: SA-220207-7074 Batch: 210050

Type: Finished Products Matrix: Concentrate - Distillate Received: 02/09/2022 Completed: 02/24/2022 Client KaliBloom Miami, FL USA

Microbials by PCR and Plating

Analyte	LOD (CFU/g)	Result (CFU/g)	Result (Qualitative)
Coliforms	1	ND	
Aerobic Bacteria	1	ND	
Salmonella			Not Detected per 1 gram
Total Enterobacteriaceae			Not Detected per 1 gram

ND = Not Detected; NT = Not Tested; LOD = Limit of Detection; LOQ = Limit of Quantitation; CFU = Colony Forming Units; P = Pass; F = Fail; RL = Reporting Limit

Generated By: Ryan Bellone Commercial Director Date: 02/24/2022

Tested By: Alex Morris Quality Assurance Manager

Date: 02/16/2022

KCA Laboratories 232 North Plaza Drive

Nicholasville, KY 40356

+1-833-KCA-LABS https://kcalabs.com KDA Lic.# P_0058

Certificate of Analysis

7 of 8

pop rocks

Sample ID: SA-220207-7074

Batch: 210050

Type: Finished Products Matrix: Concentrate - Distillate Received: 02/09/2022 Completed: 02/24/2022 **Client** KaliBloom Miami, FL USA

Residual Solvents by HS-GC-MS/MS

Analyte	LOD (ppm)	LOQ (ppm)	Result (ppm)	Analyte	LOD (ppm)	LOQ (ppm)	Result (ppm)
Acetone	167	500	ND	Ethylene Glycol	21	62	ND
Acetonitrile	14	41	ND	Ethylene Oxide	0.5	1/1	ND
Benzene	0.5	1	ND	Heptane	167	500	ND
Butane	167	500	ND	n-Hexane	10	29	ND
1-Butanol	167	500	ND	Isobutane	167	500	ND
2-Butanol	167	500	ND	Isopropyl Acetate	167	500	ND
2-Butanone	167	500	ND	Isopropyl Alcohol	167	500	ND
Chloroform	2	6	ND	Isopropylbenzene	167	500	ND
Cyclohexane	129	388	ND	Methanol	100	300	ND
1,2-Dichloroethane	0.5	1	ND	2-Methylbutane	10	29	ND
1,2-Dimethoxyethane	4	10	ND	Methylene Chloride	20	60	ND
Dimethyl Sulfoxide	167	500	ND	2-Methylpentane	10	29	ND
N,N-Dimethylacetamide	37	109	ND	3-Methylpentane	10	29	ND
2,2-Dimethylbutane	10	29	ND	n-Pentane	167	500	ND
2,3-Dimethylbutane	10	29	ND	1-Pentanol	167	500	ND
N,N-Dimethylformamide	30	88	ND	n-Propane	167	500	ND
2,2-Dimethylpropane	167	500	ND	1-Propanol	167	500	ND
1,4-Dioxane	13	38	ND	Pyridine	7	20	ND
Ethanol	167	500	ND	Tetrahydrofuran	24	72	ND
2-Ethoxyethanol	6	16	ND	Toluene	30	89	ND
Ethyl Acetate	167	500	ND	Trichloroethylene	3	8	ND
Ethyl Ether	167	500	ND	Tetramethylene Sulfone	6	16	ND
Ethylbenzene	3	7	ND	Xylenes (o-, m-, and p-)	73	217	ND

ND = Not Detected; NT = Not Tested; LOD = Limit of Detection; LOQ = Limit of Quantitation; P = Pass; F = Fail; RL = Reporting Limit

Red

Tested By: Scott Caudill Senior Scientist Date: 02/17/2022

Generated By: Ryan Bellone Commercial Director Date: 02/24/2022

232 North Plaza Drive Nicholasville, KY 40356 +1-833-KCA-LABS https://kcalabs.com KDA Lic.# P_0058

Certificate of Analysis

8 of 8

pop rocks

Sample ID: SA-220207-7074

Batch: 210050

Type: Finished Products Matrix: Concentrate - Distillate Received: 02/09/2022 Completed: 02/24/2022 **Client** KaliBloom Miami, FL USA

Reporting Limit Appendix

Heavy Metals - Colorado CDPHE

Analyte	Limit (ppb) Analyte	Limit (ppb)
Arsenic	1500 Lead	500
Cadmium	500 Mercury	1500

Microbials - Colorado CDPHE

Analyte	Limit (CFU/ g) Analyte	Limit (CFU/ g)
Coliforms	100 Aerobic Bacteria	10000

Residual Solvents - USP 467

Analyte	Limit (ppm)	Analyte	Limit (ppm
Acetone	5000	Ethylene Glycol	620
Acetonitrile	410	Ethylene Oxide	1
Benzene	2	Heptane	5000
Butane	5000	n-Hexane	290
1-Butanol	5000	Isobutane	5000
2-Butanol	5000	Isopropyl Acetate	5000
2-Butanone	5000	Isopropyl Alcohol	5000
Chloroform	60	Isopropylbenzene	5000
Cyclohexane	3880	Methanol	3000
1,2-Dichloroethane	5	2-Methylbutane	290
1,2-Dimethoxyethane	100	Methylene Chloride	600
Dimethyl Sulfoxide	5000	2-Methylpentane	290
N,N-Dimethylacetamide	1090	3-Methylpentane	290
2,2-Dimethylbutane	290	n-Pentane	5000
	290	1-Pentanol	5000
N,N-Dimethylformamide	880	n-Propane	5000
2,2-Dimethylpropane	5000	1-Propanol	5000
1,4-Dioxane	380	Pyridine	200
Ethanol	5000	Tetrahydrofuran	720
2-Ethoxyethanol	160	Toluene	890
Ethyl Acetate	5000	Trichloroethylene	80
Ethyl Ether	5000	Tetramethylene Sulfone	e 160
Ethylbenzene	70	Xylenes (o-, m-, and p-)	2170

Pesticides - CA DCC

Analyte	Limit (ppb)	Analyte	Limit (ppb)
Acetamiprid	5000	Imidacloprid	3000
Aldicarb	30	Kresoxim methyl	1000
Azoxystrobin	40000	Malathion	5000
Boscalid	10000	Metalaxyl	15000
Carbaryl	500	Methiocarb	30
Carbofuran	30	Methomyl	100
Chloranthraniliprole	40000	Mevinphos	30
Chlorfenapyr	30	Myclobutanil	9000
Chlorpyrifos	30	Oxamyl	200
Coumaphos	30	Paclobutrazol	30
Daminozide	30	Piperonyl Butoxide	8000
Diazinon	200	Prallethrin	400
Dichlorvos	30	Propiconazole	20000
Dimethoate	30	Propoxur	30
Dimethomorph	20000	Pyridaben	3000
Ethoprophos	30	Spinetoram	3000
Etofenprox	30	Spinosad	3000
Etoxazole	1500	Spiromesifen	12000
Fenhexamid	10000	Spirotetramat	13000
Fenoxycarb	30	Spiroxamine	30
Fenpyroximate	2000	Tebuconazole	2000
Fipronil	30	Thiacloprid	30
Flonicamid	2000	Thiamethoxam	4500
Fludioxonil	30000	Trifloxystrobin	30000

Mycotoxins - Colorado CDPHE

Analyte	Limit (ppm) Analyte	Limit (ppm)
B1	5 B2	5
G1	5 G2	5
Ochratoxin A	5	

Pesticides - CA DCC

Analyte	Limit (ppb) Analyte	Limit (ppb)
Abamectin	300 Hexythiazox	2000
Acephate	5000 Imazalil	30

232 North Plaza Drive Nicholasville, KY 40356 +1-833-KCA-LABS https://kcalabs.com KDA Lic.# P_0058

Certificate of Analysis

1 of 8

truffle

Sample ID: SA-220207-7075

Batch: 210050

Type: Finished Products Matrix: Concentrate - Distillate Received: 02/09/2022 Completed: 02/25/2022 **Client** KaliBloom Miami, FL USA

Summary

Test **Date Tested** Status 02/24/2022 Cannabinoids Tested Cannabinoids (Additional) 02/24/2022 Tested 02/14/2022 Tested Heavy Metals Microbials 02/16/2022 Tested Mycotoxins 02/25/2022 Tested Pesticides 02/25/2022 Tested Residual Solvents 02/17/2022 Tested Terpenes 02/22/2022 Tested

Cannabinoids by HPLC-PDA, LC-MS/MS, and/or GC-MS/MS

ND	0.120 %	0.120 %	Not Tested	Not Tested	Yes
Total Δ9-THC	CBN	Total Cannabinoids	Moisture Content	Foreign Matter	Internal Standard Normalization

, o ta. 25		32		. o tai. oai.	a.c.11,010.0	Normalization
Analyte	LOD (%)	LOQ (%)	Result (%)	Result (% dry)		
CBC	0.0095	0.0284	ND	ND	uAU	SA-220207-7075
CBCA	0.0181	0.0543	ND	ND	uAO	
CBCV	0.006	0.018	ND	ND	-	
CBD	0.0081	0.0242	ND	ND	_	
CBDA	0.0043	0.013	ND	ND	400000	
CBDV	0.0061	0.0182	ND	ND	-	
CBDVA <	0.0021	0.0063	ND	ND		
CBG	0.0057	0.0172	ND	ND	300000	
BGA	0.0049	0.0147	ND	ND		
CBL	0.0112	0.0335	ND	ND	-	
BLA	0.0124	0.0371	ND	ND	200000	
CBN <	0.0056	0.0169	0.120	0.120		lard
BNA	0.006	0.0181	ND	ND	- 1	ial Standard
∆8-THC	0.0104	0.0312	ND	ND	100000	iternal
9-THC	0.0076	0.0227	ND	ND	_	
∆9-THCA	0.0084	0.0251 <	ND	ND		
∆9-THCV	0.0069	0.0206	ND	ND	0	N V V
Ŋ-THCVA	0.0062	0.0186	ND	ND	,	
otal Δ9-THC			ND	ND		2.5 5.0 7.5 10.0
otal CBD			ND	ND		
Total .			0.120	0.120		

ND = Not Detected; NT = Not Tested; LOD = Limit of Detection; LOQ = Limit of Quantitation; RL = Reporting Limit; Δ = Delta; Total Δ9-THC = Δ9-THCA * 0.877 + Δ9-THC; Total CBD = CBDA * 0.877 + CBD;

Generated By: Alex Morris Quality Assurance Manager Date: 02/25/2022

Tested By: Jasper van Heemst Principal Scientist Date: 02/24/2022

ISO/IEC 17025:2017 Accredited
Accreditation #108651

KCA Laboratories 232 North Plaza Drive Nicholasville, KY 40356

+1-833-KCA-LABS https://kcalabs.com KDA Lic.# P_0058

Certificate of Analysis

2 of 8

truffle


Sample ID: SA-220207-7075 Batch: 210050 Type: Finished Products Matrix: Concentrate - Distillate

Received: 02/09/2022 Completed: 02/25/2022 Client KaliBloom Miami, FL USA

Cannabinoids by HPLC-PDA, LC-MS/MS, and/or GC-MS/MS

ND = Not Detected; NT = Not Tested; LOD = Limit of Detection; LOQ = Limit of Quantitation; RL = Reporting Limit; Δ = Delta; Total Δ 9-THC = Δ 9-THC + Δ 9-THC; Total CBD = CBDA * 0.877 + CBD;

Accreditation #108651

Generated By: Alex Morris Quality Assurance Manager Date: 02/25/2022

Tested By: Jasper van Heemst Principal Scientist Date: 02/24/2022

232 North Plaza Drive Nicholasville, KY 40356 +1-833-KCA-LABS https://kcalabs.com KDA Lic.# P_0058

Certificate of Analysis

3 of 8

truffle

Sample ID: SA-220207-7075 Batch: 210050

Type: Finished Products Matrix: Concentrate - Distillate Received: 02/09/2022 Completed: 02/25/2022 **Client** KaliBloom Miami, FL USA

Terpenes by HS-GC-MS/MS

Analyte	LOD (%)	LOQ (%)	Result (%)	Analyte	LOD (%)	LOQ (%)	Result (%)
α-Bisabolol	0.00001	0.00005	0.176406	Limonene	0.00001	0.00005	1.12491
(+)-Borneol	0.00001	0.00005	ND	Linalool	0.00001	0.00005	0.30803
Camphene	0.00001	0.00005	0.033357	β-myrcene	0.00001	0.00005	0.970874
Camphor	0.00001	0.00005	0.026404	Nerol	0.00001	0.00005	ND
3-Carene	0.00001	0.00005	0.098548	cis-Nerolidol	0.00001	0.00005	ND
β-Caryophyllene	0.00001	0.00005	0.140393	trans-Nerolidol	0.00001	0.00005	ND
Caryophyllene Oxide	0.00001	0.00005	ND	Ocimene	0.00001	0.00005	ND
α -Cedrene	0.00001	0.00005	0.013671	α-Phellandrene	0.00001	0.00005	ND
Cedrol	0.00001	0.00005	ND	α-Pinene	0.00001	0.00005	0.171039
Eucalyptol	0.00001	0.00005	ND	β-Pinene	0.00001	0.00005	0.206767
Fenchone	0.00001	0.00005	ND	Pulegone	0.00001	0.00005	ND
Fenchyl Alcohol	0.00001	0.00005	0.347886	Sabinene	0.00001	0.00005	ND
Geraniol	0.00001	0.00005	ND	Sabinene Hydrate	0.00001	0.00005	ND
Geranyl Acetate	0.00001	0.00005	ND	α -Terpinene	0.00001	0.00005	0.005623
Guaiol	0.00001	0.00005	ND	γ-Terpinene	0.00001	0.00005	0.011439
Hexadhydrothymol	0.00001	0.00005	ND	α-Terpineol	0.00001	0.00005	0.089824
lpha-Humulene	0.00001	0.00005	0.143009	γ-Terpineol	0.00001	0.00005	ND
Isoborneol	0.00001	0.00005	ND	Terpinolene	0.00001	0.00005	0.084851
Isopulegol	0.00001	0.00005	ND	Total Terpenes (%)			3.95

ND = Not Detected; NT = Not Tested; LOD = Limit of Detection; LOQ = Limit of Quantitation; P = Pass; F = Fail; RL = Reporting Limit

Heavy Metals by ICP-MS

Analyte	LOD (ppb)	LOQ (ppb)	Result (ppb)
Arsenic	2	20	ND
Cadmium	1	20	ND
Lead	2	20	ND
Mercury	12	50	ND

 $ND = Not\ Detected;\ NT = Not\ Tested;\ LOD = Limit\ of\ Detection;\ LOQ = Limit\ of\ Quantitation;\ P = Pass;\ F = Fail;\ RL = Reporting\ Limit\ Detection;\ P = Pass;\ P = Fail;\ P = Pass;\ P =$

Generated By: Alex Morris Quality Assurance Manager Date: 02/25/2022 Tested By Nicholas Howillrd Sensoreotientist Date: 02/22/2022

+1-833-KCA-LABS 232 North Plaza Drive https://kcalabs.com Nicholasville, KY 40356 KDA Lic.# P_0058

Certificate of Analysis

4 of 8

truffle

Sample ID: SA-220207-7075

Batch: 210050

Type: Finished Products Matrix: Concentrate - Distillate Received: 02/09/2022 Completed: 02/25/2022 Client KaliBloom Miami, FL USA

Pesticides by LC-MS/MS and GC-MS/MS

Analyte	LOD (ppb)	LOQ (ppb)	Result (ppb)	Analyte	LOD (ppb)	LOQ (ppb)	Result (ppb)
Abamectin	30	100	ND	Hexythiazox	30	100	ND
Acephate	30	100	ND	Imazalil	30	100	ND
Acetamiprid	30	100	ND	Imidacloprid	30	100	ND
Aldicarb	30	100	ND	Kresoxim methyl	30	100	ND
Azoxystrobin	30	100	ND	Malathion	30	100	ND
Bifenazate	30	100	ND	Metalaxyl	30	100	ND
Boscalid	30	100	ND	Methiocarb	30	100	ND
Carbaryl	30	100	ND	Methomyl	30	100	ND
Carbofuran	30	100	ND	Mevinphos	30	100	ND
Chloranthraniliprole	30	100	ND	Myclobutanil	30	100	ND
Chlorpyrifos	30	100	ND	Oxamyl	30	100	ND
Coumaphos	30	100	ND	Paclobutrazol	30	100	ND
Diazinon	30	100	ND	Piperonyl Butoxide	30	100	ND
Dichlorvos	30	100	ND	Propoxur	30	100	ND
Dimethoate	30	100	ND	Pyridaben	30	100	ND
Dimethomorph	30	100	ND	Spinetoram	30	100	ND
Ethoprophos	30	100	ND	Spinosad	30	100	ND
Etoxazole	30	100	ND	Spiromesifen	30	100	ND
Fenhexamid	30	100	ND	Spirotetramat	30	100	ND
Fenoxycarb	30	100	ND	Spiroxamine	30	100	ND
Fenpyroximate	30	100	ND	Tebuconazole	30	100	ND
Fipronil	30	100	ND	Thiacloprid	30	100	ND
Flonicamid	30	100	ND	Thiamethoxam	30	100	ND
				Trifloxystrobin	30	100	ND

ND = Not Detected; NT = Not Tested; LOD = Limit of Detection; LOQ = Limit of Quantitation; P = Pass; F = Fail; RL = Reporting Limit

Generated By: Alex Morris Quality Assurance Manager Date: 02/25/2022

+1-833-KCA-LABS 232 North Plaza Drive https://kcalabs.com Nicholasville, KY 40356 KDA Lic.# P_0058

Certificate of Analysis

5 of 8

truffle

Sample ID: SA-220207-7075 Batch: 210050 Type: Finished Products

Matrix: Concentrate - Distillate

Received: 02/09/2022 Completed: 02/25/2022 Client KaliBloom Miami, FL USA

Mycotoxins by LC-MS/MS

B1 1 5 ND B2 1 5 ND S ND	Analyte	LOD (ppb)	LOQ (ppb)	Result (ppb)
G1 1 5 ND	B1	1	5	ND
	B2	1	5	ND
C2 ND	G1	1	5	ND
GZ 1	G2	1	5	ND
Ochratoxin A 1 5 ND	Ochratoxin A	1	5	ND

ND = Not Detected; NT = Not Tested; LOD = Limit of Detection; LOQ = Limit of Quantitation; P = Pass; F = Fail; RL = Reporting Limit

Generated By: Alex Morris

Quality Assurance Manager

Date: 02/25/2022

Tested By: Scott Caudill Senior Scientist Date: 02/25/2022

KCA Laboratories 232 North Plaza Drive

+1-833-KCA-LABS https://kcalabs.com Nicholasville, KY 40356 KDA Lic.# P_0058

Certificate of Analysis

6 of 8

truffle

Sample ID: SA-220207-7075

Batch: 210050

Type: Finished Products Matrix: Concentrate - Distillate Received: 02/09/2022 Completed: 02/25/2022 Client KaliBloom Miami, FL USA

Microbials by PCR and Plating

Analyte	LOD (CFU/g)	Result (CFU/g)	Result (Qualitative)
Coliforms	1	ND	
Aerobic Bacteria	1	ND	
Salmonella			Not Detected per 1 gram
Total Enterobacteriaceae			Not Detected per 1 gram

ND = Not Detected; NT = Not Tested; LOD = Limit of Detection; LOQ = Limit of Quantitation; CFU = Colony Forming Units; P = Pass; F = Fail; RL = Reporting Limit

Generated By: Alex Morris Quality Assurance Manager Date: 02/25/2022

Tested By: Alex Morris Quality Assurance Manager Date: 02/16/2022

This product or substance has been tested by KCA Laboratories using validated testing methodologies and an ISO/IEC 170252017 accredited quality system. Values reported relate only to the product or substance tested. The reported result is based on a sample weight. Unless otherwise stated, results of tests performed on all quality control samples met criteria for acceptance established by KCA Laboratories. KCA Laboratories makes no claims as to the efficacy, safety or other risks associated with any detected or non-detected amounts of any substances reported herein. This Certificate of Analysis shall not be reproduced except in full, without the written approval of KCA Laboratories can provide measurement uncertainty upon request.

+1-833-KCA-LABS 232 North Plaza Drive https://kcalabs.com Nicholasville, KY 40356 KDA Lic.# P_0058

Certificate of Analysis

7 of 8

truffle

Sample ID: SA-220207-7075

Batch: 210050

Type: Finished Products Matrix: Concentrate - Distillate Received: 02/09/2022 Completed: 02/25/2022 Client KaliBloom Miami, FL USA

Residual Solvents by HS-GC-MS/MS

Analyte	LOD (ppm)	LOQ (ppm)	Result (ppm)	Analyte	LOD (ppm)	LOQ (ppm)	Result (ppm)
Acetone	167	500	ND	Ethylene Glycol	21	62	ND
Acetonitrile	14	41	ND	Ethylene Oxide	0.5	1/1	ND
Benzene	0.5	1	ND	Heptane	167	500	ND
Butane	167	500	ND	n-Hexane	10	29	ND
1-Butanol	167	500	ND	Isobutane	167	500	ND
2-Butanol	167	500	ND	Isopropyl Acetate	167	500	ND
2-Butanone	167	500	ND	Isopropyl Alcohol	167	500	ND
Chloroform	2	6	ND	Isopropylbenzene	167	500	ND
Cyclohexane	129	388	ND	Methanol	100	300	ND
1,2-Dichloroethane	0.5	1	ND	2-Methylbutane	10	29	ND
1,2-Dimethoxyethane	4	10	ND	Methylene Chloride	20	60	ND
Dimethyl Sulfoxide	167	500	ND	2-Methylpentane	10	29	ND
N,N-Dimethylacetamide	37	109	ND	3-Methylpentane	10	29	ND
2,2-Dimethylbutane	10	29	ND	n-Pentane	167	500	ND
2,3-Dimethylbutane	10	29	ND	1-Pentanol	167	500	ND
N,N-Dimethylformamide	30	88	ND	n-Propane	167	500	ND
2,2-Dimethylpropane	167	500	ND	1-Propanol	167	500	ND
1,4-Dioxane	13	38	ND	Pyridine	7	20	ND
Ethanol	167	500	ND	Tetrahydrofuran	24	72	ND
2-Ethoxyethanol	6	16	ND	Toluene	30	89	ND
Ethyl Acetate	167	500	ND	Trichloroethylene	3	8	ND
Ethyl Ether	167	500	ND	Tetramethylene Sulfone	6	16	ND
Ethylbenzene	3	7	ND	Xylenes (o-, m-, and p-)	73	217	ND

ND = Not Detected; NT = Not Tested; LOD = Limit of Detection; LOQ = Limit of Quantitation; P = Pass; F = Fail; RL = Reporting Limit

Generated By: Alex Morris Quality Assurance Manager Date: 02/25/2022

Tested By: Scott Caudill Senior Scientist Date: 02/17/2022

232 North Plaza Drive Nicholasville, KY 40356 +1-833-KCA-LABS https://kcalabs.com KDA Lic.# P_0058

Certificate of Analysis

8 of 8

truffle

Sample ID: SA-220207-7075

Batch: 210050

Type: Finished Products Matrix: Concentrate - Distillate Received: 02/09/2022 Completed: 02/25/2022 **Client** KaliBloom Miami, FL USA

Reporting Limit Appendix

Heavy Metals - Colorado CDPHE

Analyte	Limit (ppb) Analyte	Limit (ppb)
Arsenic	1500 Lead	500
Cadmium	500 Mercury	1500

Microbials - Colorado CDPHE

Analyte	Limit (CFU/ g) Analyte	Limit (CFU/ g)
Coliforms	100 Aerobic Bacteria	10000

Residual Solvents - USP 467

Analyte	Limit (ppm)	Analyte	Limit (ppm)
Acetone	5000	Ethylene Glycol	620
Acetonitrile	410	Ethylene Oxide	1
Benzene	2	Heptane	5000
Butane	5000	n-Hexane	290
1-Butanol	5000	Isobutane	5000
2-Butanol	5000	Isopropyl Acetate	5000
2-Butanone	5000	Isopropyl Alcohol	5000
Chloroform	60	Isopropylbenzene	5000
Cyclohexane	3880	Methanol	3000
1,2-Dichloroethane	5	2-Methylbutane	290
1,2-Dimethoxyethane	100	Methylene Chloride	600
Dimethyl Sulfoxide	5000	2-Methylpentane	290
N,N-Dimethylacetamide	1090	3-Methylpentane	290
2,2-Dimethylbutane	290	n-Pentane	5000
	290	1-Pentanol	5000
N,N-Dimethylformamide	880	n-Propane	5000
2,2-Dimethylpropane	5000	1-Propanol	5000
1,4-Dioxane	380	Pyridine	200
Ethanol	5000	Tetrahydrofuran	720
2-Ethoxyethanol	160	Toluene	890
Ethyl Acetate	5000	Trichloroethylene	80
Ethyl Ether	5000	Tetramethylene Sulfone	160
Ethylbenzene	70	Xylenes (o-, m-, and p-)	2170

Pesticides - CA DCC

Analyte	Limit (ppb)	Analyte	Limit (ppb)
Acetamiprid	5000	Imidacloprid	3000
Aldicarb	30	Kresoxim methyl	1000
Azoxystrobin	40000	Malathion	5000
Bifenazate	5000	Metalaxyl	15000
Boscalid	10000	Methiocarb	30
Carbaryl	500	Methomyl	100
Carbofuran	30	Mevinphos	30
Chloranthraniliprole	40000	Myclobutanil	9000
Chlorpyrifos	30	Oxamyl	200
Coumaphos	30	Paclobutrazol	30
Diazinon	200	Piperonyl Butoxide	8000
Dichlorvos	30	Propoxur	30
Dimethoate	30	Pyridaben	3000
Dimethomorph	20000	Spinetoram	3000
Ethoprophos	30	Spinosad	3000
Etoxazole	1500	Spiromesifen	12000
Fenhexamid	10000	Spirotetramat	13000
Fenoxycarb	30	Spiroxamine	30
Fenpyroximate	2000	Tebuconazole	2000
Fipronil	30	Thiacloprid	30
Flonicamid	2000	Thiamethoxam	4500

Mycotoxins - Colorado CDPHE

Analyte	Limit (ppm) Ana	lyte	Limit (ppm)
B1	5 B2		5
G1	5 G2		5
Ochratoxin A	5		

Pesticides - CA DCC

Analyte	Limit (ppb) Analyte	Limit (ppb)
Abamectin	300 Hexythiazox	2000
Acephate	5000 Imazalil	30

232 North Plaza Drive Nicholasville, KY 40356 KDA Lic.# P_0058

+1-833-KCA-LABS https://kcalabs.com

Certificate of Analysis

1 of 6

the wedding mintz

Sample ID: SA-220207-7076

Batch: 210050

Type: Finished Products Matrix: Concentrate - Distillate Received: 02/09/2022 Completed: 02/22/2022 Client KaliBloom Miami, FL USA

Summary

Test Cannabinoids Cannabinoids (Additional) Heavy Metals Microbials Residual Solvents Terpenes

Date Tested Status 02/22/2022 Tested 02/22/2022 Tested 02/14/2022 Tested 02/16/2022 Tested 02/17/2022 Tested 02/22/2022 Tested

Cannabinoids by HPLC-PDA, LC-MS/MS, and/or GC-MS/MS

0.0295 % 3.23 % 3.29 % **Not Tested Not Tested** Yes Total Δ9-THC Δ8-ΤΗС Total Cannabinoids Moisture Content Foreign Matter Internal Standard Normalization

										Normalization
	LOD	LOQ	Result	Result			SA-2	220207-7076		
Analyte	(%)	(%)	(%)	(mg/g)	uAU 600000-					
CBC	0.0095	0.0284	ND	ND	_					
CBCA	0.0181	0.0543	ND	ND	500000				7	
CBCV	0.006	0.018	ND	ND	-					
CBD	0.0081	0.0242	ND	ND	400000					
CBDA	0.0043	0.013	ND	ND	400000					
CBDV	0.0061	0.0182	ND	ND	-					
CBDVA	0.0021	0.0063	ND	ND	300000					
CBG	0.0057	0.0172	ND	ND						
CBGA	0.0049	0.0147	ND	ND	200000					ard
CBL	0.0112	0.0335	ND	ND						Stand
CBLA	0.0124	0.0371	ND	ND	100000			d8-THC		Interna
CBN	0.0056	0.0169	0.0223	0.223]			24		
CBNA	0.006	0.0181	ND	ND	0		8	~ \\\	14/4	A
Δ8-THC	0.0104	0.0312	3.23	32.3		2.5	5.0	7.5		10.0 min
Δ9-ΤΗС	0.0076	0.0227	0.0295	0.295	(x1,000,000)	12				Max Intensity: 8,417,6
Δ9-ΤΗCΑ	0.0084	0.0251	ND	ND	7.0-	nternal Standar				
Δ9-ΤΗCV	0.0069	0.0206	ND	ND	6.0	rnal Si				
Δ9-THCVA	0.0062	0.0186	ND	ND	5.0	Inte				
Total ∆9-THC			0.0295	0.295	4.0	1		U		
Total CBD			ND	ND	3.0			delta8-THC		
Total			3.29	32.9	1.0	 		delta		
					3.0	4.0 5.0 6.0	7.0 8.0 9.0	7 4	12.0 13.0	14.0 15.0 16.0 17.0 18.0
					2.00				10.0	10.0

ND = Not Detected; NT = Not Tested; LOD = Limit of Detection; LOQ = Limit of Quantitation; RL = Reporting Limit; Δ = Delta; Total Δ 9-THC = Δ 9-THC4 * 0.877 + Δ 9-THC; Total CBD = CBDA * 0.877 + CBD;

Generated By: Alex Morris

Quality Assurance Manager

Date: 02/23/2022

Tested By: Scott Caudill Senior Scientist Date: 02/22/2022

ISO/IEC 17025:2017 Accredited Accreditation #108651

KCA Laboratories 232 North Plaza Drive

Nicholasville, KY 40356

+1-833-KCA-LABS https://kcalabs.com KDA Lic.# P_0058

Certificate of Analysis

2 of 6

the wedding mintz

Sample ID: SA-220207-7076

Batch: 210050

Type: Finished Products Matrix: Concentrate - Distillate Received: 02/09/2022 Completed: 02/22/2022 Client KaliBloom Miami, FL USA

Cannabinoids by HPLC-PDA, LC-MS/MS, and/or GC-MS/MS

ND = Not Detected; NT = Not Tested; LOD = Limit of Detection; LOQ = Limit of Quantitation; RL = Reporting Limit; Δ = Delta; Total Δ 9-THC = Δ 9-THC + Δ 9-THC; Total CBD = CBDA * 0.877 + CBD;

Accreditation #108651

Generated By: Alex Morris Quality Assurance Manager Date: 02/23/2022

Tested By: Scott Caudill Senior Scientist Date: 02/22/2022

232 North Plaza Drive Nicholasville, KY 40356 +1-833-KCA-LABS https://kcalabs.com KDA Lic.# P_0058

Certificate of Analysis

3 of 6

the wedding mintz

Sample ID: SA-220207-7076

Batch: 210050

Type: Finished Products Matrix: Concentrate - Distillate Received: 02/09/2022 Completed: 02/22/2022 **Client** KaliBloom Miami, FL USA

Terpenes by HS-GC-MS/MS

Analyte	LOD (%)	LOQ (%)	Result (%)	Analyte	LOD (%)	LOQ (%)	Result (%)
α -Bisabolol	0.00001	0.00005	0.137807	Limonene	0.00001	0.00005	0.344309
(+)-Borneol	0.00001	0.00005	ND	Linalool	0.00001	0.00005	0.037578
Camphene	0.00001	0.00005	0.01128	β-myrcene	0.00001	0.00005	0.23273
Camphor	0.00001	0.00005	ND	Nerol	0.00001	0.00005	ND
3-Carene	0.00001	0.00005	ND	cis-Nerolidol	0.00001	0.00005	ND
β-Caryophyllene	0.00001	0.00005	0.06414	trans-Nerolidol	0.00001	0.00005	0.021753
Caryophyllene Oxide	0.00001	0.00005	ND	Ocimene	0.00001	0.00005	ND
α -Cedrene	0.00001	0.00005	ND	α -Phellandrene	0.00001	0.00005	0.012948
Cedrol	0.00001	0.00005	ND	α -Pinene	0.00001	0.00005	0.049011
Eucalyptol	0.00001	0.00005	ND	β-Pinene	0.00001	0.00005	0.044211
Fenchone	0.00001	0.00005	ND	Pulegone	0.00001	0.00005	ND
Fenchyl Alcohol	0.00001	0.00005	0.043917	Sabinene	0.00001	0.00005	ND
Geraniol	0.00001	0.00005	ND	Sabinene Hydrate	0.00001	0.00005	ND
Geranyl Acetate	0.00001	0.00005	ND	α -Terpinene	0.00001	0.00005	ND
Guaiol	0.00001	0.00005	ND	γ-Terpinene	0.00001	0.00005	ND
Hexadhydrothymol	0.00001	0.00005	0.169735	α-Terpineol	0.00001	0.00005	0.019992
lpha-Humulene	0.00001	0.00005	0.066335	γ-Terpineol	0.00001	0.00005	ND
Isoborneol	0.00001	0.00005	0.011486	Terpinolene	0.00001	0.00005	0.008675
Isopulegol	0.00001	0.00005	ND	Total Terpenes (%)			1.48

ND = Not Detected; NT = Not Tested; LOD = Limit of Detection; LOQ = Limit of Quantitation; P = Pass; F = Fail; RL = Reporting Limit

Heavy Metals by ICP-MS

Analyte	LOD (ppb)	LOQ (ppb)	Result (ppb)	
Arsenic	2	20	ND	
Cadmium	1	20	ND	
Lead	2	20	ND	
Mercury	12	50	ND	

 $ND = Not \ Detected; \ NT = Not \ Tested; \ LOD = Limit \ of \ Detection; \ LOQ = Limit \ of \ Quantitation; \ P = Pass; \ F = Fail; \ RL = Reporting \ Limit \ of \ Pass \ Pas$

Generated By: Alex Morris Quality Assurance Manager Date: 02/23/2022 Tested By Nicholas Howillrd Sensorientishtist Date: 02/22/2022

KCA Laboratories 232 North Plaza Drive

Nicholasville, KY 40356

+1-833-KCA-LABS https://kcalabs.com KDA Lic.# P_0058

Certificate of Analysis

4 of 6

the wedding mintz

Sample ID: SA-220207-7076

Batch: 210050

Type: Finished Products Matrix: Concentrate - Distillate Received: 02/09/2022 Completed: 02/22/2022 Client KaliBloom Miami, FL USA

Microbials by PCR and Plating

Analyte	LOD (CFU/g)	Result (CFU/g)	Result (Qualitative)
Coliforms	1	ND	
Aerobic Bacteria	1	ND	
Salmonella			Not Detected per 1 gram
Total Enterobacteriaceae			Not Detected per 1 gram

ND = Not Detected; NT = Not Tested; LOD = Limit of Detection; LOQ = Limit of Quantitation; CFU = Colony Forming Units; P = Pass; F = Fail; RL = Reporting Limit

Generated By: Alex Morris Quality Assurance Manager Date: 02/23/2022

Tested By: Alex Morris Quality Assurance Manager Date: 02/16/2022

+1-833-KCA-LABS 232 North Plaza Drive https://kcalabs.com Nicholasville, KY 40356 KDA Lic.# P_0058

Certificate of Analysis

5 of 6

the wedding mintz

Sample ID: SA-220207-7076

Batch: 210050

Type: Finished Products Matrix: Concentrate - Distillate Received: 02/09/2022 Completed: 02/22/2022 Client KaliBloom Miami, FL USA

Residual Solvents by HS-GC-MS/MS

Analyte	LOD (ppm)	LOQ (ppm)	Result (ppm)	Analyte	LOD (ppm)	LOQ (ppm)	Result (ppm)
Acetone	167	500	ND	Ethylene Glycol	21	62	ND
Acetonitrile	14	41	ND	Ethylene Oxide	0.5	1/1	ND
Benzene	0.5	1	ND	Heptane	167	500	ND
Butane	167	500	ND	n-Hexane	10	29	ND
1-Butanol	167	500	ND	Isobutane	167	500	ND
2-Butanol	167	500	ND	Isopropyl Acetate	167	500	ND
2-Butanone	167	500	ND	Isopropyl Alcohol	167	500	<rl< td=""></rl<>
Chloroform	2	6	ND	Isopropylbenzene	167	500	ND
Cyclohexane	129	388	ND	Methanol	100	300	ND
1,2-Dichloroethane	0.5	1	ND	2-Methylbutane	10	29	ND
1,2-Dimethoxyethane	4	10	ND	Methylene Chloride	20	60	ND
Dimethyl Sulfoxide	167	500	ND	2-Methylpentane	10	29	ND
N,N-Dimethylacetamide	37	109	ND	3-Methylpentane	10	29	ND
2,2-Dimethylbutane	10	29	ND	n-Pentane	167	500	ND
2,3-Dimethylbutane	10	29	ND	1-Pentanol	167	500	ND
N,N-Dimethylformamide	30	88	ND	n-Propane	167	500	ND
2,2-Dimethylpropane	167	500	ND	1-Propanol	167	500	ND
1,4-Dioxane	13	38	ND	Pyridine	7	20	ND
Ethanol	167	500	ND	Tetrahydrofuran	24	72	ND
2-Ethoxyethanol	6	16	ND	Toluene	30	89	ND
Ethyl Acetate	167	500	ND	Trichloroethylene	3	8	ND
Ethyl Ether	167	500	ND	Tetramethylene Sulfone	6	16	ND
Ethylbenzene	3	7	ND	Xylenes (o-, m-, and p-)	73	217	ND

ND = Not Detected; NT = Not Tested; LOD = Limit of Detection; LOQ = Limit of Quantitation; P = Pass; F = Fail; RL = Reporting Limit

Generated By: Alex Morris Quality Assurance Manager Date: 02/23/2022

Tested By: Scott Caudill Senior Scientist Date: 02/17/2022

232 North Plaza Drive Nicholasville, KY 40356 +1-833-KCA-LABS https://kcalabs.com KDA Lic.# P_0058

Certificate of Analysis

6 of 6

the wedding mintz

Sample ID: SA-220207-7076

Batch: 210050

Type: Finished Products Matrix: Concentrate - Distillate Received: 02/09/2022 Completed: 02/22/2022 **Client** KaliBloom Miami, FL USA

Reporting Limit Appendix

Heavy Metals - Colorado CDPHE

Analyte	Limit (ppb) Analyte	Limit (ppb)
Arsenic	1500 Lead	500
Cadmium	500 Mercury	1500

Microbials - Colorado CDPHE

Analyte	Limit (CFU/ g) Analyte	Limit (CFU/ g)
Coliforms	100 Aerobic Bacteria	10000

Residual Solvents - USP 467

Analyte		Limit (ppm)	Analyte	Limit (ppm)
Acetone		5000	Ethylene Glycol	620
Acetonitrile		410	Ethylene Oxide	1
Benzene		2	Heptane	5000
Butane		5000	n-Hexane	290
1-Butanol		5000	Isobutane	5000
2-Butanol		5000	Isopropyl Acetate	5000
2-Butanone		5000	Isopropyl Alcohol	5000
Chloroform		60	Isopropylbenzene	5000
Cyclohexane		3880	Methanol	3000
1,2-Dichloroethane		5	2-Methylbutane	290
1,2-Dimethoxyethane		100	Methylene Chloride	600
Dimethyl Sulfoxide		5000	2-Methylpentane	290
N,N-Dimethylacetam	nide	1090	3-Methylpentane	290
2,2-Dimethylbutane		290	n-Pentane	5000
		290	1-Pentanol	5000
N,N-Dimethylforman	nide	880	n-Propane	5000
2,2-Dimethylpropane		5000	1-Propanol	5000
1,4-Dioxane		380	Pyridine	200
Ethanol		5000	Tetrahydrofuran	720
2-Ethoxyethanol		160	Toluene	890
Ethyl Acetate		5000	Trichloroethylene	80
Ethyl Ether		5000	Tetramethylene Sulfon	e 160
Ethylbenzene		70	Xylenes (o-, m-, and p-)	2170

